iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.NEUCOM.2016.01.090
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:14:08Z","timestamp":1726848848760},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,7,1]],"date-time":"2016-07-01T00:00:00Z","timestamp":1467331200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61571214","81371544","61262026"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Science and Technology Major Project of the Ministry of Science and Technology of China","award":["2014BAI17B02"]},{"name":"Science and Technology Program of Guangzhou","award":["201510010039"]},{"DOI":"10.13039\/501100004479","name":"Natural Science Foundation of Jiangxi Province","doi-asserted-by":"publisher","award":["20132BAB201026"],"id":[{"id":"10.13039\/501100004479","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Science and technology program of Jiangxi Education Committee","award":["LDJH12088","GJJ150994"]},{"name":"NCET Program of the Ministry of Education","award":["NCET-13-0738"]},{"name":"NIH\/NCI","award":["#CA143111","#CA082402"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2016,7]]},"DOI":"10.1016\/j.neucom.2016.01.090","type":"journal-article","created":{"date-parts":[[2016,3,28]],"date-time":"2016-03-28T16:47:47Z","timestamp":1459183667000},"page":"143-160","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations"],"prefix":"10.1016","volume":"197","author":[{"given":"Shanzhou","family":"Niu","sequence":"first","affiliation":[]},{"given":"Shanli","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhaoying","family":"Bian","sequence":"additional","affiliation":[]},{"given":"Wufan","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Gaohang","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Zhengrong","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Jianhua","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2016.01.090_bib1","doi-asserted-by":"crossref","first-page":"632","DOI":"10.1148\/radiol.2313021488","article-title":"Cerebral perfusion CT","volume":"231","author":"Hoeffner","year":"2004","journal-title":"Radiology"},{"key":"10.1016\/j.neucom.2016.01.090_bib2","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1148\/radiol.2513081073","article-title":"Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging","volume":"251","author":"Wintermark","year":"2009","journal-title":"Radiology"},{"key":"10.1016\/j.neucom.2016.01.090_bib3","first-page":"97","article-title":"Measurement of radiation dose in cerebral CT perfusion study","volume":"23","author":"Hirata","year":"2005","journal-title":"Radiat. Med."},{"key":"10.1016\/j.neucom.2016.01.090_bib4","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1007\/s00234-009-0543-6","article-title":"Radiation dose from multidetector row CT imaging for acute stroke","volume":"51","author":"Mnyusiwalla","year":"2009","journal-title":"Neuroradiology"},{"key":"10.1016\/j.neucom.2016.01.090_bib5","doi-asserted-by":"crossref","first-page":"5713","DOI":"10.1118\/1.3638125","article-title":"Low-dose computed tomography image restoration using previous normal-dose scan","volume":"38","author":"Ma","year":"2011","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2016.01.090_bib6","doi-asserted-by":"crossref","first-page":"7519","DOI":"10.1088\/0031-9155\/57\/22\/7519","article-title":"Iterative image reconstruction for cerebral perfusion CT using pre-contrast scan induced edge-preserving prior","volume":"57","author":"Ma","year":"2012","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib7","doi-asserted-by":"crossref","first-page":"2967","DOI":"10.1007\/s00330-008-1083-x","article-title":"Dose reduction in dynamic perfusion CT of the brain: effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time","volume":"18","author":"Wiesmann","year":"2008","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.neucom.2016.01.090_bib8","doi-asserted-by":"crossref","first-page":"2","DOI":"10.3174\/ajnr.A1967","article-title":"FDA investigates the safety of brain perfusion CT","volume":"31","author":"Wintermark","year":"2010","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neucom.2016.01.090_bib9","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1016\/j.acra.2008.09.003","article-title":"Ultra-low dose lung CT perfusion regularized by a previous scan","volume":"16","author":"Yu","year":"2009","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.neucom.2016.01.090_bib10","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1109\/TMI.2006.882141","article-title":"Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography","volume":"25","author":"Wang","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.01.090_bib11","first-page":"1881","article-title":"Using 80kVp versus 120kVp in perfusion CT measurement of regional cerebral blood flow","volume":"21","author":"Wintermark","year":"2000","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neucom.2016.01.090_bib12","doi-asserted-by":"crossref","first-page":"65","DOI":"10.2217\/iim.09.5","article-title":"Radiation dose reduction in computed tomography","volume":"1","author":"Yu","year":"2009","journal-title":"Imaging Med."},{"key":"10.1016\/j.neucom.2016.01.090_bib13","first-page":"3351","article-title":"4D micro-CT for cardiac and perfusion applications with view under sampling","volume":"56","author":"Badea","year":"2011","journal-title":"Phys. Med."},{"key":"10.1016\/j.neucom.2016.01.090_bib14","doi-asserted-by":"crossref","first-page":"2333","DOI":"10.1088\/0031-9155\/55\/8\/014","article-title":"Perfusion measurements by micro-CT using prior image constrained compressed sensing (PICCS)","volume":"55","author":"Nett","year":"2010","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib15","doi-asserted-by":"crossref","first-page":"3857","DOI":"10.1088\/0031-9155\/56\/13\/008","article-title":"TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps","volume":"56","author":"Mendrik","year":"2011","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib16","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1007\/s12194-007-0009-7","article-title":"Realization of reliable cerebral-blood-flow maps from low-dose CT perfusion images by statistical noise reduction using nonlinear diffusion filtering","volume":"1","author":"Saito","year":"2008","journal-title":"Radiol. Phys. Technol."},{"key":"10.1016\/j.neucom.2016.01.090_bib17","doi-asserted-by":"crossref","first-page":"N183","DOI":"10.1088\/0031-9155\/57\/12\/N183","article-title":"Computed tomography perfusion imaging denoising using Gaussian process regression","volume":"57","author":"Zhu","year":"2012","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib18","doi-asserted-by":"crossref","unstructured":"R. Fang, J. Huang, W. Luh, A spatio-temporal low-rank total variation approach for denoising arterial spin labeling MRI Data, in: The IEEE International Symposium on Biomedical Imaging, New York City, NY, USA, 2015.","DOI":"10.1109\/ISBI.2015.7163920"},{"key":"10.1016\/j.neucom.2016.01.090_bib19","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1109\/TMI.2015.2405015","article-title":"Robust low-dose CT perfusion deconvolution via tensor total-variation regularization","volume":"34","author":"Fang","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.01.090_bib20","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.media.2013.10.004","article-title":"A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain","volume":"18","author":"Frindel","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2016.01.090_bib21","doi-asserted-by":"crossref","first-page":"4777","DOI":"10.1088\/0031-9155\/53\/17\/021","article-title":"Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization","volume":"53","author":"Sidky","year":"2008","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib22","doi-asserted-by":"crossref","first-page":"6411","DOI":"10.1088\/0031-9155\/55\/21\/005","article-title":"Dual energy CT using slow kVp switching acquisition and prior image constrained compressed sensing","volume":"55","author":"Szczykutowicz","year":"2010","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib23","doi-asserted-by":"crossref","first-page":"1122","DOI":"10.1137\/100817206","article-title":"Robust video restoration by joint sparse and low rank matrix approximation","volume":"4","author":"Ji","year":"2011","journal-title":"SIAM J. Imaging Sci."},{"key":"10.1016\/j.neucom.2016.01.090_bib24","doi-asserted-by":"crossref","first-page":"1154","DOI":"10.1109\/TIP.2014.2298976","article-title":"Joint non-Gaussian denoising and superresolving of raw high frame rate videos","volume":"23","author":"Suo","year":"2014","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2016.01.090_bib25","doi-asserted-by":"crossref","first-page":"3183","DOI":"10.1088\/0031-9155\/56\/11\/002","article-title":"Robust principal component analysis-based four-dimensional computed tomography","volume":"56","author":"Gao","year":"2011","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib26","doi-asserted-by":"crossref","first-page":"115012","DOI":"10.1088\/0266-5611\/27\/11\/115012","article-title":"Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)","volume":"27","author":"Gao","year":"2011","journal-title":"Inverse Probl."},{"key":"10.1016\/j.neucom.2016.01.090_bib27","doi-asserted-by":"crossref","first-page":"1042","DOI":"10.1109\/TMI.2010.2100850","article-title":"Accelerated dynamic MRI exploiting sparsity and low-rank structure","volume":"30","author":"Lingala","year":"2011","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.01.090_bib28","first-page":"467563","article-title":"Deconvolution-based CT and MR brain perfusion measurement","author":"Fieselmann","year":"2011","journal-title":"Int. J. Biomed. Imaging"},{"key":"10.1016\/j.neucom.2016.01.090_bib29","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1137\/070697835","article-title":"Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization","volume":"52","author":"Recht","year":"2010","journal-title":"SIAM Rev."},{"key":"10.1016\/j.neucom.2016.01.090_bib30","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/BF00927673","article-title":"Multiplier and gradient methods","volume":"4","author":"Hestenes","year":"1969","journal-title":"J. Optim. Theory Appl."},{"key":"10.1016\/j.neucom.2016.01.090_bib31","first-page":"1013","article-title":"L1\/2 regularization","volume":"23","author":"Xu","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn."},{"key":"10.1016\/j.neucom.2016.01.090_bib32","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1109\/TIT.2005.862083","article-title":"Robust uncertainty principles","volume":"52","author":"Candes","year":"2006","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.neucom.2016.01.090_bib33","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1137\/080725891","article-title":"The split Bregman algorithm for l1 regularized problems","volume":"2","author":"Goldstein","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"key":"10.1016\/j.neucom.2016.01.090_bib34","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1137\/070703983","article-title":"Bregman iterative algorithms for L1 minimization with applications to compressed sensing","volume":"1","author":"Yin","year":"2008","journal-title":"SIAM J. Imaging Sci."},{"key":"10.1016\/j.neucom.2016.01.090_bib35","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1080\/10556780701661344","article-title":"Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization","volume":"23","author":"Yu","year":"2008","journal-title":"Optim. Method Softw."},{"key":"10.1016\/j.neucom.2016.01.090_bib36","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","article-title":"A singular value thresholding algorithm for matrix completion","volume":"20","author":"Cai","year":"2010","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.neucom.2016.01.090_bib37","doi-asserted-by":"crossref","first-page":"4066","DOI":"10.1118\/1.3600696","article-title":"Inverse determination of the penalty parameter in penalized weighted least-squares algorithm for noise reduction of low-dose CBCT","volume":"38","author":"Wang","year":"2011","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2016.01.090_bib38","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1080\/00207160.2012.700400","article-title":"Spatially dependent regularization parameter selection in total generalized variation models for image restoration","volume":"90","author":"Bredies","year":"2013","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.neucom.2016.01.090_bib39","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.1109\/TMI.2013.2257178","article-title":"Dynamic iterative reconstruction for interventional 4-D C-arm CT perfusion imaging","volume":"32","author":"Manhart","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.01.090_bib40","doi-asserted-by":"crossref","first-page":"1676","DOI":"10.1118\/1.1915015","article-title":"Penalized-likelihood sinogram smoothing for low-dose CT","volume":"32","author":"La Rivi\u00e8re","year":"2005","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2016.01.090_bib41","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TNS.1974.6499235","article-title":"The Fourier reconstruction of a head section","volume":"21","author":"Shepp","year":"1974","journal-title":"IEEE Trans. Nucl. Sci."},{"key":"10.1016\/j.neucom.2016.01.090_bib42","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1002\/mrm.1910360510","article-title":"High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I","volume":"36","author":"\u00d8tergaard","year":"1996","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neucom.2016.01.090_bib43","first-page":"731","article-title":"On the theory of the indicator-dilution method for measurement of blood flow and volume","volume":"6","author":"Meier","year":"1954","journal-title":"J. Appl. Phys."},{"key":"10.1016\/j.neucom.2016.01.090_bib44","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1109\/97.995823","article-title":"A universal image quality index","volume":"9","author":"Wang","year":"2002","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.neucom.2016.01.090_bib45","doi-asserted-by":"crossref","first-page":"255","DOI":"10.2307\/2532051","article-title":"A concordance correlation coefficient to evaluate reproducibility","volume":"45","author":"Lin","year":"1989","journal-title":"Biometrics"},{"key":"10.1016\/j.neucom.2016.01.090_bib46","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.compmedimag.2013.05.004","article-title":"SR-NLM","volume":"37","author":"Bian","year":"2013","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.neucom.2016.01.090_bib47","doi-asserted-by":"crossref","first-page":"2997","DOI":"10.1088\/0031-9155\/59\/12\/2997","article-title":"Sparse-view x-ray CT reconstruction via total generalized variation","volume":"59","author":"Niu","year":"2014","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.neucom.2016.01.090_bib48","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1016\/j.neuroimage.2006.06.015","article-title":"Bayesian estimation of cerebral perfusion using a physiological model of microvasculature","volume":"33","author":"Mouridsen","year":"2006","journal-title":"NeuroImage"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231216003313?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231216003313?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,3]],"date-time":"2022-07-03T16:32:58Z","timestamp":1656865978000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231216003313"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,7]]},"references-count":48,"alternative-id":["S0925231216003313"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2016.01.090","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2016,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2016.01.090","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}