iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.NEUCOM.2013.11.010
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:21:24Z","timestamp":1726500084103},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,6,1]],"date-time":"2014-06-01T00:00:00Z","timestamp":1401580800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2014,6]]},"DOI":"10.1016\/j.neucom.2013.11.010","type":"journal-article","created":{"date-parts":[[2014,1,11]],"date-time":"2014-01-11T03:19:16Z","timestamp":1389410356000},"page":"258-270","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["Imbalanced evolving self-organizing learning"],"prefix":"10.1016","volume":"133","author":[{"given":"Qiao","family":"Cai","sequence":"first","affiliation":[]},{"given":"Haibo","family":"He","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Man","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2013.11.010_bib1","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2013.11.010_bib2","unstructured":"R. Pearson, G. Goney, J. Shwaber, Imbalanced clustering for microarray time-series, in: Proceedings of the International Conference on Machine Learning, Workshop Learning from Imbalanced Data Sets II, 2003."},{"issue":"2","key":"10.1016\/j.neucom.2013.11.010_bib3","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1023\/B:AIRE.0000045502.10941.a9","article-title":"A survey of outlier detection methodologies","volume":"22","author":"Hodge","year":"2004","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.neucom.2013.11.010_bib4","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1145\/1007730.1007734","article-title":"Mining with rarity","volume":"6","author":"Weiss","year":"2004","journal-title":"ACM SIGKDD Explor. Newslett."},{"key":"10.1016\/j.neucom.2013.11.010_bib5","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1145\/1007730.1007737","article-title":"Class imbalances versus small disjuncts","volume":"6","author":"Jo","year":"2004","journal-title":"ACM SIGKDD Explor. Newslett."},{"key":"10.1016\/j.neucom.2013.11.010_bib6","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1023\/A:1007601015854","article-title":"Robust classification for imprecise environments","volume":"42","author":"Provost","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2013.11.010_bib7","doi-asserted-by":"crossref","unstructured":"X. Liu, J. Wu, Z. Zhou, Exploratory under sampling for class imbalance learning, in: Proceedings of the International Conference on Data Mining, 2006.","DOI":"10.1109\/ICDM.2006.68"},{"key":"10.1016\/j.neucom.2013.11.010_bib8","unstructured":"J. Zhang, I. Mani, KNN approach to unbalanced data distributions: a case study involving information extraction, in: Proceedings of the International Conference on Machine Learning, Workshop Learning from Imbalanced Data Set, 2003."},{"key":"10.1016\/j.neucom.2013.11.010_bib9","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.neucom.2013.11.010_bib10","doi-asserted-by":"crossref","unstructured":"H. Han, W. Wang, B. Mao, Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning, in: Proceedings of the International Conference on Intelligent Computing, 2005.","DOI":"10.1007\/11538059_91"},{"key":"10.1016\/j.neucom.2013.11.010_bib11","unstructured":"H. He, Y. Bai, E. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: Proceedings of the International Conference on Neural Networks, 2008."},{"key":"10.1016\/j.neucom.2013.11.010_bib12","doi-asserted-by":"crossref","unstructured":"N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, SMOTEBoost: improving prediction of the minority class in boosting, in: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases, 2003.","DOI":"10.1007\/978-3-540-39804-2_12"},{"key":"10.1016\/j.neucom.2013.11.010_bib13","unstructured":"M. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: Proceedings of the International Conference on Machine Learning, Workshop Learning from Imbalanced Data Sets II, 2003."},{"key":"10.1016\/j.neucom.2013.11.010_bib14","unstructured":"Y. Tang, Y. Zhang, Granular SVM with repetitive undersampling for highly imbalanced protein homology prediction, in: Proceedings of the International Conference on Granular Computing, 2006."},{"key":"10.1016\/j.neucom.2013.11.010_bib15","unstructured":"J. Kim, B. Moon, New usage of SOM for genetic algorithms, in: Genetic and Evolutionary Computation, Lecture Notes in Computer Science, vol. 2723, 2003, pp. 1101\u20131111."},{"key":"10.1016\/j.neucom.2013.11.010_bib16","unstructured":"J. Zhu, E. Hovy, Active learning for word sense disambiguation with methods for addressing the class imbalanced problem, in: Proceedings of the International Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2007."},{"key":"10.1016\/j.neucom.2013.11.010_bib17","doi-asserted-by":"crossref","unstructured":"T. Kohonen, Self-Organizing Maps, Springer, 2001.","DOI":"10.1007\/978-3-642-56927-2"},{"key":"10.1016\/j.neucom.2013.11.010_bib18","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/B978-044450270-4\/50024-3","article-title":"Energy functions for self-organizing maps","author":"Heskes","year":"1999","journal-title":"Kohonen Maps"},{"key":"10.1016\/j.neucom.2013.11.010_bib19","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/S0925-2312(97)00040-4","article-title":"Multiple self-organizing maps","volume":"16","author":"Cervera","year":"1997","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2013.11.010_bib20","doi-asserted-by":"crossref","unstructured":"Q. Cai, S. Chen, X. Li, N. Hu, H. He, Y. Yao, J. Mitola, An integrated incremental self-organizing map and hierarchical neural network approach for cognitive radio learning, in: Proceedings of the International Joint Conference on Neural Networks, 2010.","DOI":"10.1109\/IJCNN.2010.5596337"},{"year":"1989","series-title":"Genetic Algorithms in Search, Optimization, and Machine Learning","author":"Goldberg","key":"10.1016\/j.neucom.2013.11.010_bib21"},{"key":"10.1016\/j.neucom.2013.11.010_bib22","unstructured":"C. Blake, C. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine, 1998, \u3008http:\/\/www.ics.uci.edu\/mlearn\/MLRepository.html\u3009."},{"key":"10.1016\/j.neucom.2013.11.010_bib23","doi-asserted-by":"crossref","first-page":"786","DOI":"10.1109\/TKDE.2005.95","article-title":"KBA","volume":"17","author":"Wu","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2013.11.010_bib24","doi-asserted-by":"crossref","first-page":"1624","DOI":"10.1109\/TNN.2010.2066988","article-title":"RAMOBoost","volume":"21","author":"Chen","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2013.11.010_bib25","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/TNN.2006.882812","article-title":"A kernel-based two-class classifier for imbalanced data sets","volume":"18","author":"Hong","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2013.11.010_bib26","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1109\/TNN.2010.2041468","article-title":"Sensitivity vs. accuracy in multiclass problems using memetic Pareto evolutionary neural networks","volume":"21","author":"Caballero","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2013.11.010_bib27","doi-asserted-by":"crossref","unstructured":"Q. Cai, Y. Yin, H. Man, Learning Spatio-Temporal Dependencies for Action Recognition, ICIP, 2013.","DOI":"10.1109\/ICIP.2013.6738771"},{"key":"10.1016\/j.neucom.2013.11.010_bib28","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.neucom.2013.02.007","article-title":"Spatial outlier detection based on iterative self-organizing learning model","volume":"117","author":"Cai","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2013.11.010_bib29","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1109\/TKDE.2006.17","article-title":"Training cost-sensitive neural networks with methods addressing the class imbalance problem","volume":"18","author":"Zhou","year":"2006","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2013.11.010_bib30","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/72.914517","article-title":"An introduction to kernel-based learning algorithms","volume":"12","author":"Muller","year":"2001","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2013.11.010_bib31","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/72.963766","article-title":"Self-organizing maps, vector quantization, and mixture modeling","volume":"12","author":"Heskes","year":"2001","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2013.11.010_bib32","doi-asserted-by":"crossref","unstructured":"Q. Cai, H. He, H. Man, SOMSO: a self-organizing map approach for spatial outlier detection with multiple attributes, in: Proceedings of International Joint Conference on Neural Networks, 2009, pp. 425\u2013431.","DOI":"10.1109\/IJCNN.2009.5178884"},{"key":"10.1016\/j.neucom.2013.11.010_bib33","doi-asserted-by":"crossref","unstructured":"Y. Sun, M. Kamel, Y. Wang, Boosting for learning multiple classes with imbalanced class distribution, in: Proceedings of the International Conference on Data Mining, 2006.","DOI":"10.1109\/ICDM.2006.29"},{"key":"10.1016\/j.neucom.2013.11.010_bib34","doi-asserted-by":"crossref","unstructured":"K. Chen, B. Lu, J. Kwok, Efficient classification of multi-label and imbalanced data using min-max modular classifiers, in: Proceedings of the International Joint Conference on Neural Networks, 2006.","DOI":"10.1109\/IJCNN.2006.246893"},{"key":"10.1016\/j.neucom.2013.11.010_bib35","doi-asserted-by":"crossref","first-page":"3358","DOI":"10.1016\/j.patcog.2007.04.009","article-title":"Cost-sensitive boosting for classification of imbalanced data","volume":"40","author":"Sun","year":"2007","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2013.11.010_bib36","unstructured":"W. Fan, S. Stolfo, J. Zhang and P. Chan, AdaCost: misclassification cost-sensitive Boosting, in: Proceedings of the International Conference on Machine Learning, 1999."},{"key":"10.1016\/j.neucom.2013.11.010_bib37","doi-asserted-by":"crossref","unstructured":"K. Ting, A comparative study of cost-sensitive Boosting algorithms, in: Proceedings of the International Conference on Machine Learning, 2000.","DOI":"10.1007\/3-540-45164-1_42"},{"key":"10.1016\/j.neucom.2013.11.010_bib38","unstructured":"M. Kukar, I. Kononenko, Cost-sensitive learning with neural networks, in: Proceedings of the European Conference on Artificial Intelligence, 1998."},{"key":"10.1016\/j.neucom.2013.11.010_bib39","doi-asserted-by":"crossref","unstructured":"S. Ertekin, J. Huang, L. Bottou, C. Giles, Learning on the border: active learning in imbalanced data classification, in: Proceedings of the ACM Conference on Information and Knowledge Management, 2007.","DOI":"10.1145\/1321440.1321461"},{"key":"10.1016\/j.neucom.2013.11.010_bib40","doi-asserted-by":"crossref","unstructured":"S. Ertekin, J. Huang, C. Giles, Active learning for class imbalance problem, in: Proceedings of the International Conference on Research and Development in Information Retrieval, 2007.","DOI":"10.1145\/1277741.1277927"},{"key":"10.1016\/j.neucom.2013.11.010_bib41","first-page":"1579","article-title":"Fast kernel classifiers with online and active learning","volume":"6","author":"Bordes","year":"2005","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2013.11.010_bib42","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","article-title":"An introduction to ROC analysis","volume":"27","author":"Fawcett","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.neucom.2013.11.010_bib43","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Demsar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"year":"2009","series-title":"Nonparametric Statistics for Non-Statisticians","author":"Corder","key":"10.1016\/j.neucom.2013.11.010_bib44"},{"key":"10.1016\/j.neucom.2013.11.010_bib45","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1613\/jair.614","article-title":"Popular ensemble methods","volume":"11","author":"Opitz","year":"1999","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.neucom.2013.11.010_bib46","unstructured":"N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, Proceedings of AAAI Workshop Learning from Imbalanced Data Sets, 2000."},{"key":"10.1016\/j.neucom.2013.11.010_bib47","doi-asserted-by":"crossref","unstructured":"L. Zhou, Q. Cai, F. He, H. Man, MSOM based automatic modulation recognition and demodulation, in: IEEE Sarnoff Symposium, 2011.","DOI":"10.1109\/SARNOF.2011.5876460"},{"key":"10.1016\/j.neucom.2013.11.010_bib48","doi-asserted-by":"crossref","unstructured":"Q. Cai, H. He, H. Man, Hybrid learning based on multiple self-organizing maps and genetic algorithm, in: Proceedings of the International Joint Conference on Neural Networks, 2011, pp. 2313\u20132320.","DOI":"10.1109\/IJCNN.2011.6033517"},{"key":"10.1016\/j.neucom.2013.11.010_bib49","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1109\/TNN.2008.2005496","article-title":"Constructing ensembles of classifiers by means of weighted instance selection","volume":"20","author":"Garcia-Pedrajas","year":"2009","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2013.11.010_bib50","doi-asserted-by":"crossref","unstructured":"Q. Cai, Y. Yin, H. Man, DSPM: dynamic structure preserving map for action recognition, IEEE International Conference on Multimedia and Expo (ICME 2013), 2013.","DOI":"10.1109\/ICME.2013.6607606"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523121400006X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523121400006X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,6]],"date-time":"2019-08-06T10:10:47Z","timestamp":1565086247000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523121400006X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,6]]},"references-count":50,"alternative-id":["S092523121400006X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2013.11.010","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2014,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Imbalanced evolving self-organizing learning","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2013.11.010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}