{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T19:49:30Z","timestamp":1726343370046},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","award":["311164\/2020-0"],"id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006162","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Ci\u00eancia e Tecnologia do Estado de Pernambuco","doi-asserted-by":"publisher","award":["IBPG-0402-1.03\/17"],"id":[{"id":"10.13039\/501100006162","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.knosys.2021.107191","type":"journal-article","created":{"date-parts":[[2021,6,10]],"date-time":"2021-06-10T12:10:54Z","timestamp":1623327054000},"page":"107191","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Soft subspace clustering of interval-valued data with regularizations"],"prefix":"10.1016","volume":"227","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4160-5244","authenticated-orcid":false,"given":"Sara I.R.","family":"Rodr\u00edguez","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1128-745X","authenticated-orcid":false,"given":"Francisco de A.T.","family":"de Carvalho","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.knosys.2021.107191_b1","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1145\/331499.331504","article-title":"Data clustering: a review","volume":"31","author":"Jain","year":"1999","journal-title":"ACM Comput. Surv."},{"issue":"1","key":"10.1016\/j.knosys.2021.107191_b2","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/34.824819","article-title":"Statistical pattern recognition: a review","volume":"22","author":"Jain","year":"2000","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2021.107191_b3","series-title":"Data Mining: Concepts, Models and Techniques, vol. 12","author":"Gorunescu","year":"2011"},{"key":"10.1016\/j.knosys.2021.107191_b4","article-title":"Unsupervised feature selection based extreme learning machine for clustering","author":"Chen","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2021.107191_b5","series-title":"Pattern Recognition with Fuzzy Objective Function Algorithms","author":"Bezdek","year":"2013"},{"key":"10.1016\/j.knosys.2021.107191_b6","unstructured":"E. Diday, The symbolic approach in clustering and related methods of data analysis, in: Proceedings of IFCS, Classification and Related Methods of Data Analysis, 1988, pp. 673\u2013384."},{"key":"10.1016\/j.knosys.2021.107191_b7","series-title":"Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data","author":"Bock","year":"2012"},{"issue":"11","key":"10.1016\/j.knosys.2021.107191_b8","doi-asserted-by":"crossref","first-page":"1648","DOI":"10.1016\/j.patrec.2008.04.008","article-title":"Dynamic clustering of interval data using a Wasserstein-based distance","volume":"29","author":"Irpino","year":"2008","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.knosys.2021.107191_b9","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s11634-014-0169-3","article-title":"Trimmed fuzzy clustering for interval-valued data","volume":"9","author":"D\u2019Urso","year":"2015","journal-title":"Adv. Data Anal. Classif."},{"key":"10.1016\/j.knosys.2021.107191_b10","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.patcog.2016.04.005","article-title":"Fuzzy c-ordered medoids clustering for interval-valued data","volume":"58","author":"Leski","year":"2016","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.knosys.2021.107191_b11","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1007\/s10700-016-9238-8","article-title":"Exponential distance-based fuzzy clustering for interval-valued data","volume":"16","author":"D\u2019Urso","year":"2017","journal-title":"Fuzzy Optim. Decis. Mak."},{"issue":"23","key":"10.1016\/j.knosys.2021.107191_b12","doi-asserted-by":"crossref","first-page":"2978","DOI":"10.1016\/j.fss.2010.08.003","article-title":"Fuzzy k-means clustering algorithms for interval-valued data based on adaptive quadratic distances","volume":"161","author":"de\u00a0A.T.\u00a0de Carvalho","year":"2010","journal-title":"Fuzzy Sets and Systems"},{"issue":"7","key":"10.1016\/j.knosys.2021.107191_b13","doi-asserted-by":"crossref","first-page":"3223","DOI":"10.1016\/j.eswa.2013.11.013","article-title":"A weighted multivariate fuzzy c-means method in interval-valued scientific production data","volume":"41","author":"Pimentel","year":"2014","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2021.107191_b14","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1016\/j.neucom.2017.05.084","article-title":"Fuzzy clustering of interval-valued data with city-block and hausdorff distances","volume":"266","author":"de\u00a0A.T.\u00a0de Carvalho","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2021.107191_b15","series-title":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4","first-page":"2227","article-title":"A maximum-entropy approach to fuzzy clustering","author":"Li","year":"1995"},{"issue":"6","key":"10.1016\/j.knosys.2021.107191_b16","doi-asserted-by":"crossref","first-page":"1452","DOI":"10.1016\/j.csda.2005.01.008","article-title":"Fuzzy unsupervised classification of multivariate time trajectories with the shannon entropy regularization","volume":"50","author":"Coppi","year":"2006","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.knosys.2021.107191_b17","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.knosys.2018.12.007","article-title":"Density-sensitive fuzzy kernel maximum entropy clustering algorithm","volume":"166","author":"Tao","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"9","key":"10.1016\/j.knosys.2021.107191_b18","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1002\/cem.2728","article-title":"A modified fuzzy c-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise","volume":"29","author":"Sing","year":"2015","journal-title":"J. Chemometr."},{"key":"10.1016\/j.knosys.2021.107191_b19","unstructured":"S. Miyamoto, M. Mukaidono, Fuzzy c-means as a regularization and maximum entropy approach, in: Proceedings of the 7th Fuzzy System Association World Confgress, Prague, Czech Republic, vol. 2, 1997, pp. 86\u201392."},{"key":"10.1016\/j.knosys.2021.107191_b20","series-title":"International Conference on Artificial Neural Networks","first-page":"695","article-title":"Fuzzy clustering algorithm based on adaptive euclidean distance and entropy regularization for interval-valued data","author":"Rodr\u00edguez","year":"2018"},{"key":"10.1016\/j.knosys.2021.107191_b21","first-page":"1035","article-title":"Solution of incorrectly formulated problems and the regularization method","volume":"4","author":"Tihonov","year":"1963","journal-title":"Soviet Math."},{"key":"10.1016\/j.knosys.2021.107191_b22","series-title":"International Conference on Modeling Decisions for Artificial Intelligence","first-page":"144","article-title":"Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization","author":"Mizutani","year":"2005"},{"key":"10.1016\/j.knosys.2021.107191_b23","series-title":"1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228), vol. 2","first-page":"1394","article-title":"Fuzzy clustering by quadratic regularization","author":"Miyamoto","year":"1998"},{"key":"10.1016\/j.knosys.2021.107191_b24","series-title":"2014 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE","first-page":"2505","article-title":"FCM-Type fuzzy co-clustering by KL information regularization","author":"Honda","year":"2014"},{"issue":"2","key":"10.1016\/j.knosys.2021.107191_b25","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/S0165-0114(97)00126-7","article-title":"Gaussian Clustering method based on maximum-fuzzy-entropy interpretation","volume":"102","author":"Li","year":"1999","journal-title":"Fuzzy Sets and Systems"},{"issue":"04","key":"10.1016\/j.knosys.2021.107191_b26","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1142\/S0219467802000858","article-title":"Fuzzy c-means and mixture distribution models in the presence of noise clusters","volume":"2","author":"Miyamoto","year":"2002","journal-title":"Int. J. Image Graph."},{"issue":"2","key":"10.1016\/j.knosys.2021.107191_b27","first-page":"217","article-title":"Methods of fuzzy c-means and possibilistic clustering using a quadratic term","volume":"60","author":"Miyamoto","year":"2004","journal-title":"Sci. Math. Jpn."},{"issue":"13","key":"10.1016\/j.knosys.2021.107191_b28","doi-asserted-by":"crossref","first-page":"1788","DOI":"10.1016\/j.patrec.2007.05.004","article-title":"Regularized fuzzy c-means method for brain tissue clustering","volume":"28","author":"Hou","year":"2007","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2021.107191_b29","series-title":"International Conference on Fuzzy Systems","first-page":"1","article-title":"An extension of possibilistic fuzzy c-means with regularization","author":"Namkoong","year":"2010"},{"key":"10.1016\/j.knosys.2021.107191_b30","series-title":"2017 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE","first-page":"1","article-title":"Fuzzy clustering algorithm with automatic variable selection and entropy regularization","author":"Rodr\u00edguez","year":"2017"},{"issue":"2","key":"10.1016\/j.knosys.2021.107191_b31","doi-asserted-by":"crossref","first-page":"163","DOI":"10.20965\/jaciii.2018.p0163","article-title":"Power-regularized fuzzy clustering for spherical data","volume":"22","author":"Kanzawa","year":"2018","journal-title":"J. Adv. Comput. Intell. Intell. Inform."},{"key":"10.1016\/j.knosys.2021.107191_b32","first-page":"1","article-title":"Automatic fuzzy genetic algorithm in clustering for images based on the extracted intervals","author":"Phamtoan","year":"2020","journal-title":"Multimedia Tools Appl."},{"issue":"3","key":"10.1016\/j.knosys.2021.107191_b33","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.patrec.2003.10.016","article-title":"Clustering of interval data based on city\u2013block distances","volume":"25","author":"de\u00a0Souza","year":"2004","journal-title":"Pattern Recognit. Lett."},{"issue":"6","key":"10.1016\/j.knosys.2021.107191_b34","doi-asserted-by":"crossref","first-page":"1295","DOI":"10.1109\/TSMCA.2009.2030167","article-title":"Dynamic clustering of interval-valued data based on adaptive quadratic distances","volume":"39","author":"de\u00a0A.T.\u00a0de Carvalho","year":"2009","journal-title":"IEEE Trans. Syst. Man Cybern. A"},{"issue":"7","key":"10.1016\/j.knosys.2021.107191_b35","doi-asserted-by":"crossref","first-page":"1223","DOI":"10.1016\/j.patcog.2008.11.016","article-title":"Partitional clustering algorithms for symbolic interval data based on single adaptive distances","volume":"42","author":"de\u00a0A.T.\u00a0de Carvalho","year":"2009","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2021.107191_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2019.106969","article-title":"A study of divisive clustering with hausdorff distances for interval data","volume":"96","author":"Chen","year":"2019","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.knosys.2021.107191_b37","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1007\/s10115-019-01367-w","article-title":"Dynamic clustering of interval data based on hybrid LqLq distance","volume":"62","author":"de\u00a0Souza","year":"2020","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.knosys.2021.107191_b38","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.ins.2017.04.040","article-title":"Fuzzy clustering of distributional data with automatic weighting of variable components","volume":"406","author":"Irpino","year":"2017","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.knosys.2021.107191_b39","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/0165-0114(91)90064-W","article-title":"L1-norm based fuzzy clustering","volume":"39","author":"Jajuga","year":"1991","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.knosys.2021.107191_b40","series-title":"Pattern Recognition with Fuzzy Objective Function Algorithms, vol. 3","first-page":"44","author":"Bczdek","year":"1981"},{"key":"10.1016\/j.knosys.2021.107191_b41","first-page":"47","article-title":"Digital pattern classification","author":"Diday","year":"1976","journal-title":"Cap. Clustering Analysis"},{"issue":"11","key":"10.1016\/j.knosys.2021.107191_b42","doi-asserted-by":"crossref","first-page":"3053","DOI":"10.1016\/j.patcog.2007.02.019","article-title":"Clustering and aggregation of relational data with applications to image database categorization","volume":"40","author":"Frigui","year":"2007","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.knosys.2021.107191_b43","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","article-title":"Comparing partitions","volume":"2","author":"Hubert","year":"1985","journal-title":"J. Classification"},{"issue":"2","key":"10.1016\/j.knosys.2021.107191_b44","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1007\/s00180-006-0261-z","article-title":"Dynamic clustering for interval data based on l2 distance","volume":"21","author":"de\u00a0A.T.\u00a0de Carvalho","year":"2006","journal-title":"Comput. Statist."},{"issue":"9\u201310","key":"10.1016\/j.knosys.2021.107191_b45","doi-asserted-by":"crossref","first-page":"1641","DOI":"10.1016\/S0167-8655(03)00003-5","article-title":"Discovering cluster-based local outliers","volume":"24","author":"He","year":"2003","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2021.107191_b46","series-title":"Model and analyse interval data","author":"Duarte\u00a0Silva","year":"2020"},{"issue":"10","key":"10.1016\/j.knosys.2021.107191_b47","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.1016\/j.patrec.2004.03.016","article-title":"Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns","volume":"25","author":"Guru","year":"2004","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2021.107191_b48","first-page":"289","article-title":"Mercury in the food web: accumulation and transfer mechanisms","volume":"34","author":"Boudou","year":"1997","journal-title":"Met. Ions Biol. Syst."},{"key":"10.1016\/j.knosys.2021.107191_b49","series-title":"The fungi of California","author":"Wood","year":"2015"},{"issue":"4","key":"10.1016\/j.knosys.2021.107191_b50","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1109\/21.286391","article-title":"Generalized minkowski metrics for mixed feature-type data analysis","volume":"24","author":"Ichino","year":"1994","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.knosys.2021.107191_b51","series-title":"Symbolic Data Analysis: Conceptual Statistics and Data Mining","author":"Billard","year":"2006"},{"issue":"4","key":"10.1016\/j.knosys.2021.107191_b52","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1016\/S0308-8146(00)00327-7","article-title":"Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin","volume":"73","author":"Kallithraka","year":"2001","journal-title":"Food Chem."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121004536?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121004536?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T14:34:32Z","timestamp":1678545272000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705121004536"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":52,"alternative-id":["S0950705121004536"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.knosys.2021.107191","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Soft subspace clustering of interval-valued data with regularizations","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107191","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107191"}}