iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.KNOSYS.2019.104930
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:01:11Z","timestamp":1728176471030},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"publisher","award":["61876028"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.knosys.2019.104930","type":"journal-article","created":{"date-parts":[[2019,8,12]],"date-time":"2019-08-12T15:35:59Z","timestamp":1565624159000},"page":"104930","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["PwAdaBoost: Possible world based AdaBoost algorithm for classifying uncertain data"],"prefix":"10.1016","volume":"186","author":[{"given":"Han","family":"Liu","sequence":"first","affiliation":[]},{"given":"Xianchao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiaotong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.knosys.2019.104930_b1","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1109\/TKDE.2008.190","article-title":"A survey of uncertain data algorithms and applications","volume":"21","author":"Aggarwal","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.knosys.2019.104930_b2","series-title":"Data Classification: Algorithms and Applications","author":"Aggarwal","year":"2014"},{"key":"10.1016\/j.knosys.2019.104930_b3","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.neunet.2017.06.004","article-title":"Novel density-based and hierarchical density-based clustering algorithms for uncertain data","volume":"93","author":"Zhang","year":"2017","journal-title":"Neural Netw."},{"key":"10.1016\/j.knosys.2019.104930_b4","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.knosys.2017.04.002","article-title":"Self-adapted mixture distance measure for clustering uncertain data","volume":"126","author":"Liu","year":"2017","journal-title":"Knowl.-Based Syst."},{"issue":"3","key":"10.1016\/j.knosys.2019.104930_b5","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1145\/1016028.1016030","article-title":"Managing uncertainty in moving objects databases","volume":"29","author":"Trajcevski","year":"2004","journal-title":"ACM Trans. Database Syst."},{"issue":"4","key":"10.1016\/j.knosys.2019.104930_b6","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1007\/s00778-005-0159-3","article-title":"Model-based approximate querying in sensor networks","volume":"14","author":"Deshpande","year":"2005","journal-title":"VLDB J."},{"issue":"18","key":"10.1016\/j.knosys.2019.104930_b7","doi-asserted-by":"crossref","first-page":"3637","DOI":"10.1093\/bioinformatics\/bti583","article-title":"A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips","volume":"21","author":"Liu","year":"2005","journal-title":"Bioinformatics"},{"issue":"5","key":"10.1016\/j.knosys.2019.104930_b8","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1007\/s00778-009-0147-0","article-title":"Representing uncertain data: Models, properties, and algorithms","volume":"18","author":"Sarma","year":"2009","journal-title":"VLDB J."},{"key":"10.1016\/j.knosys.2019.104930_b9","doi-asserted-by":"crossref","unstructured":"R. Jampani, F. Xu, M. Wu, L.L. Perez, C. Jermaine, P.J. Haas, MCDB: A Monte Carlo approach to managing uncertain data, in: Proceedings of SIGMOD, 2008, pp. 687\u2013700.","DOI":"10.1145\/1376616.1376686"},{"key":"10.1016\/j.knosys.2019.104930_b10","doi-asserted-by":"crossref","unstructured":"W. Zhang, X. Lin, J. Pei, Y. Zhang, Managing uncertain data: Probabilistic approaches, in: Proceedings of WAIM, 2008, pp. 405\u2013412.","DOI":"10.1109\/WAIM.2008.42"},{"key":"10.1016\/j.knosys.2019.104930_b11","series-title":"Ranking Queries on Uncertain Data","author":"Hua","year":"2011"},{"key":"10.1016\/j.knosys.2019.104930_b12","doi-asserted-by":"crossref","first-page":"13","DOI":"10.14778\/2735461.2735463","article-title":"Top-k nearest neighbor search in uncertain data series","author":"Dallachiesa","year":"2014","journal-title":"Proc. VLDB"},{"key":"10.1016\/j.knosys.2019.104930_b13","doi-asserted-by":"crossref","unstructured":"J. Ren, S.D. Lee, X. Chen, B. Kao, R. Cheng, D. Cheung, Naive Bayes classification of uncertain data, in: Proceedings of ICDM, 2009, pp. 944\u2013949.","DOI":"10.1109\/ICDM.2009.90"},{"issue":"8","key":"10.1016\/j.knosys.2019.104930_b14","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1016\/j.knosys.2011.04.011","article-title":"A novel Bayesian classification for uncertain data","volume":"24","author":"Qin","year":"2011","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.104930_b15","doi-asserted-by":"crossref","unstructured":"B. Qin, Y. Xia, F. Li, DTU: A decision tree for uncertain data, in: Proceedings of PAKDD, 2009, pp. 4\u201315.","DOI":"10.1007\/978-3-642-01307-2_4"},{"issue":"1","key":"10.1016\/j.knosys.2019.104930_b16","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1109\/TKDE.2009.175","article-title":"Decision trees for uncertain data","volume":"23","author":"Tsang","year":"2011","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"10.1016\/j.knosys.2019.104930_b17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2435209.2435210","article-title":"Nearest neighbor-based classification of uncertain data","volume":"7","author":"Angiulli","year":"2013","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"10.1016\/j.knosys.2019.104930_b18","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.neucom.2016.12.007","article-title":"Object-to-group probabilistic distance measure for uncertain data classification","volume":"230","author":"Tavakkol","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.104930_b19","unstructured":"J. Bi, T. Zhang, Support vector classification with input data uncertainty, in: Proceedings of NIPS, 2004, pp. 161\u2013168."},{"key":"10.1016\/j.knosys.2019.104930_b20","doi-asserted-by":"crossref","unstructured":"J. Yang, S.R. Gunn, Exploiting uncertain data in support vector classification, in: Proceedings of KES, 2007, pp. 148\u2013155.","DOI":"10.1007\/978-3-540-74829-8_19"},{"key":"10.1016\/j.knosys.2019.104930_b21","doi-asserted-by":"crossref","unstructured":"B. Qin, Y. Xia, S. Prabhakar, Y. Tu, A rule-based classification algorithm for uncertain data, in: Proceedings of ICDE, 2009, pp. 1633\u20131640.","DOI":"10.1109\/ICDE.2009.164"},{"key":"10.1016\/j.knosys.2019.104930_b22","doi-asserted-by":"crossref","unstructured":"C. Gao, J. Wang, Direct mining of discriminative patterns for classifying uncertain data, in: Proceedings of SIGKDD, 2010, pp. 861\u2013870.","DOI":"10.1145\/1835804.1835913"},{"key":"10.1016\/j.knosys.2019.104930_b23","first-page":"1","article-title":"Measures of Scatter and Fisher discriminant analysis for uncertain data","author":"Tavakkol","year":"2019","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.knosys.2019.104930_b24","doi-asserted-by":"crossref","unstructured":"J. Ge, Y. Xia, C.H. Nadungodage, UNN: A neural network for uncertain data classification, in: Proceedings of PAKDD, 2010, pp. 449\u2013460.","DOI":"10.1007\/978-3-642-13657-3_48"},{"key":"10.1016\/j.knosys.2019.104930_b25","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.neucom.2015.05.121","article-title":"An algorithm for classification over uncertain data based on extreme learning machine","volume":"174","author":"Cao","year":"2016","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.knosys.2019.104930_b26","first-page":"249","article-title":"Supervised machine learning: A review of classification techniques","volume":"31","author":"Kotsiantis","year":"2007","journal-title":"Informatica (Slovenia)"},{"key":"10.1016\/j.knosys.2019.104930_b27","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.neunet.2018.02.012","article-title":"Possible world based consistency learning model for clustering and classifying uncertain data","volume":"102","author":"Liu","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.knosys.2019.104930_b28","series-title":"Managing and Mining Uncertain Data","author":"Aggarwal","year":"2010"},{"key":"10.1016\/j.knosys.2019.104930_b29","first-page":"1151","article-title":"Trio: A system for data, uncertainty, and lineage","author":"Agrawal","year":"2006","journal-title":"Proc. VLDB"},{"key":"10.1016\/j.knosys.2019.104930_b30","doi-asserted-by":"crossref","unstructured":"L. Antova, C. Koch, D. Olteanu, MayBMS: Managing incomplete information with probabilistic world-set decompositions, in: Proceedings of ICDE, 2007, pp. 1479\u20131480.","DOI":"10.1109\/ICDE.2007.369042"},{"key":"10.1016\/j.knosys.2019.104930_b31","doi-asserted-by":"crossref","unstructured":"J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, D. Suciu, MYSTIQ: A system for finding more answers by using probabilities, in: Proceedings of SIGMOD, 2005, pp. 891\u2013893.","DOI":"10.1145\/1066157.1066277"},{"key":"10.1016\/j.knosys.2019.104930_b32","first-page":"1271","article-title":"U-DBMS: A database system for managing constantly-evolving data","author":"Cheng","year":"2005","journal-title":"Proc. VLDB"},{"issue":"3","key":"10.1016\/j.knosys.2019.104930_b33","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1145\/45945.48027","article-title":"VAGUE: A user interface to relational databases that permits vague queries","volume":"6","author":"Motro","year":"1988","journal-title":"ACM Trans. Inf. Syst."},{"issue":"3","key":"10.1016\/j.knosys.2019.104930_b34","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1145\/261124.261131","article-title":"ProbView: A flexible probabilistic database system","volume":"22","author":"Lakshmanan","year":"1997","journal-title":"ACM Trans. Database Syst."},{"key":"10.1016\/j.knosys.2019.104930_b35","doi-asserted-by":"crossref","unstructured":"L. Li, Z. Yu, Z. Feng, X. Zhang, Automatic classification of uncertain data by soft classifier, in: Proceedings of ICMLC, 2011, pp. 679\u2013684.","DOI":"10.1109\/ICMLC.2011.6016789"},{"key":"10.1016\/j.knosys.2019.104930_b36","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: Theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.104930_b37","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/0098-3004(84)90020-7","article-title":"FCM: The fuzzy c-means clustering algorithm","volume":"10","author":"Bezdek","year":"1984","journal-title":"Comput. Geosci."},{"issue":"4","key":"10.1016\/j.knosys.2019.104930_b38","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1109\/TKDE.2011.221","article-title":"Clustering uncertain data based on probability distribution similarity","volume":"25","author":"Jiang","year":"2013","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.knosys.2019.104930_b39","doi-asserted-by":"crossref","unstructured":"S. Abiteboul, P.C. Kanellakis, G. Grahne, On the representation and querying of sets of possible worlds, in: Proceedings of SIGMOD, 1987, pp. 34\u201348.","DOI":"10.1145\/38714.38724"},{"key":"10.1016\/j.knosys.2019.104930_b40","doi-asserted-by":"crossref","unstructured":"A.D. Sarma, O. Benjelloun, A.Y. Halevy, J. Widom, Working Models for Uncertain Data, in: Proceedings of ICDE, 2006.","DOI":"10.1109\/ICDE.2006.174"},{"key":"10.1016\/j.knosys.2019.104930_b41","doi-asserted-by":"crossref","unstructured":"N.N. Dalvi, D. Suciu, Management of probabilistic data: Foundations and challenges, in: Proceedings of PODS, 2007, pp. 1\u201312.","DOI":"10.1145\/1265530.1265531"},{"key":"10.1016\/j.knosys.2019.104930_b42","series-title":"Non-uniform Random Variate Generation","author":"Devroye","year":"1986"},{"issue":"1","key":"10.1016\/j.knosys.2019.104930_b43","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","article-title":"A decision-theoretic generalization of on-line learning and an application to boosting","volume":"55","author":"Freund","year":"1997","journal-title":"J. Comput. System Sci."},{"key":"10.1016\/j.knosys.2019.104930_b44","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.knosys.2019.03.001","article-title":"Multi-Imbalance: An open-source software for multi-class imbalance learning","volume":"174","author":"Zhang","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.104930_b45","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.knosys.2016.12.019","article-title":"Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble","volume":"120","author":"Sun","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.104930_b46","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.inffus.2019.07.006","article-title":"Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting","volume":"54","author":"Sun","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.knosys.2019.104930_b47","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neucom.2017.03.049","article-title":"\u03b4-agree Adaboost stacked autoencoder for short-term traffic flow forecasting","volume":"247","author":"Zhou","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.104930_b48","doi-asserted-by":"crossref","first-page":"1725","DOI":"10.1016\/j.neucom.2017.09.004","article-title":"Hyperspectral image classification by Adaboost weighted composite kernel extreme learning machines","volume":"275","author":"Li","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.104930_b49","unstructured":"Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of ICML, 1996, pp. 148\u2013156."},{"issue":"3","key":"10.1016\/j.knosys.2019.104930_b50","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1023\/A:1007614523901","article-title":"Improved boosting algorithms using confidence-rated predictions","volume":"37","author":"Schapire","year":"1999","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2019.104930_b51","series-title":"Nonlinear Estimation and Classification","first-page":"149","article-title":"The boosting approach to machine learning: An overview","author":"Schapire","year":"2003"},{"key":"10.1016\/j.knosys.2019.104930_b52","doi-asserted-by":"crossref","first-page":"610","DOI":"10.14778\/2180912.2180914","article-title":"Uncertain centroid based partitional clustering of uncertain data","author":"Gullo","year":"2012","journal-title":"Proc. VLDB"},{"key":"10.1016\/j.knosys.2019.104930_b53","doi-asserted-by":"crossref","unstructured":"X. Zhang, H. Liu, X. Zhang, X. Liu, Novel density-based clustering algorithms for uncertain data, in: Proceedings of AAAI, 2014, pp. 2191\u20132197.","DOI":"10.1609\/aaai.v28i1.8962"},{"key":"10.1016\/j.knosys.2019.104930_b54","doi-asserted-by":"crossref","unstructured":"A. Z\u00fcfle, T. Emrich, K.A. Schmid, N. Mamoulis, A. Zimek, M. Renz, Representative clustering of uncertain data, in: Proceedings of KDD, 2014, pp. 243\u2013252.","DOI":"10.1145\/2623330.2623725"},{"issue":"1\u20132","key":"10.1016\/j.knosys.2019.104930_b55","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1023\/A:1007515423169","article-title":"An empirical comparison of voting classification algorithms: Bagging, boosting, and variants","volume":"36","author":"Bauer","year":"1999","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2019.104930_b56","series-title":"Introduction to Data Mining","author":"Tan","year":"2005"},{"key":"10.1016\/j.knosys.2019.104930_b57","series-title":"Introduction to Information Retrieval","author":"Manning","year":"2008"},{"key":"10.1016\/j.knosys.2019.104930_b58","series-title":"Ensemble Methods: Foundations and Algorithms","author":"Zhou","year":"2012"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119303752?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119303752?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,9,25]],"date-time":"2022-09-25T13:48:31Z","timestamp":1664113711000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705119303752"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":58,"alternative-id":["S0950705119303752"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.knosys.2019.104930","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"PwAdaBoost: Possible world based AdaBoost algorithm for classifying uncertain data","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2019.104930","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104930"}}