iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.JVCIR.2024.104268
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T20:10:01Z","timestamp":1730664601268,"version":"3.28.0"},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Visual Communication and Image Representation"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.jvcir.2024.104268","type":"journal-article","created":{"date-parts":[[2024,8,25]],"date-time":"2024-08-25T00:11:21Z","timestamp":1724544681000},"page":"104268","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Progressive cross-level fusion network for RGB-D salient object detection"],"prefix":"10.1016","volume":"104","author":[{"given":"Jianbao","family":"Li","sequence":"first","affiliation":[]},{"given":"Chen","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Yilin","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Dongping","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.jvcir.2024.104268_b1","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/TPAMI.2017.2662005","article-title":"Saliency-aware video object segmentation","volume":"40","author":"Wang","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2024.104268_b2","series-title":"International Conference on Machine Learning","first-page":"597","article-title":"Online tracking by learning discriminative saliency map with convolutional neural network","author":"Hong","year":"2015"},{"issue":"9","key":"10.1016\/j.jvcir.2024.104268_b3","doi-asserted-by":"crossref","first-page":"4290","DOI":"10.1109\/TIP.2012.2199502","article-title":"3-d object retrieval and recognition with hypergraph analysis","volume":"21","author":"Gao","year":"2012","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b4","series-title":"2013 International Conference on Information Science and Cloud Computing Companion","first-page":"728","article-title":"A model of visual attention for natural image retrieval","author":"Liu","year":"2013"},{"issue":"9","key":"10.1016\/j.jvcir.2024.104268_b5","first-page":"5541","article-title":"Siamese network for RGB-d salient object detection and beyond","volume":"44","author":"Fu","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2024.104268_b6","doi-asserted-by":"crossref","first-page":"3376","DOI":"10.1109\/TIP.2021.3060167","article-title":"CDNet: Complementary depth network for RGB-D salient object detection","volume":"30","author":"Jin","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b7","doi-asserted-by":"crossref","first-page":"3528","DOI":"10.1109\/TIP.2021.3062689","article-title":"Hierarchical alternate interaction network for RGB-D salient object detection","volume":"30","author":"Li","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b8","doi-asserted-by":"crossref","first-page":"1651","DOI":"10.1109\/TMM.2021.3069297","article-title":"Employing bilinear fusion and saliency prior information for RGB-D salient object detection","volume":"24","author":"Huang","year":"2021","journal-title":"IEEE Trans. Multimed."},{"issue":"5","key":"10.1016\/j.jvcir.2024.104268_b9","doi-asserted-by":"crossref","first-page":"2075","DOI":"10.1109\/TNNLS.2020.2996406","article-title":"Rethinking RGB-d salient object detection: Models, data sets, and large-scale benchmarks","volume":"32","author":"Fan","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.jvcir.2024.104268_b10","doi-asserted-by":"crossref","unstructured":"N. Liu, N. Zhang, K. Wan, L. Shao, J. Han, Visual saliency transformer, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 4722\u20134732.","DOI":"10.1109\/ICCV48922.2021.00468"},{"issue":"9","key":"10.1016\/j.jvcir.2024.104268_b11","first-page":"5761","article-title":"Uncertainty inspired RGB-d saliency detection","volume":"44","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2024.104268_b12","doi-asserted-by":"crossref","first-page":"2192","DOI":"10.1109\/TMM.2021.3077767","article-title":"CCAFNet: Crossflow and cross-scale adaptive fusion network for detecting salient objects in RGB-D images","volume":"24","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.jvcir.2024.104268_b13","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part VIII 16","first-page":"225","article-title":"RGB-D salient object detection with cross-modality modulation and selection","author":"Li","year":"2020"},{"issue":"3","key":"10.1016\/j.jvcir.2024.104268_b14","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TPAMI.2014.2345401","article-title":"Global contrast based salient region detection","volume":"37","author":"Cheng","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2024.104268_b15","series-title":"2014 IEEE International Conference on Image Processing","first-page":"1115","article-title":"Depth saliency based on anisotropic center-surround difference","author":"Ju","year":"2014"},{"key":"10.1016\/j.jvcir.2024.104268_b16","doi-asserted-by":"crossref","unstructured":"G. Li, Y. Yu, Visual saliency based on multiscale deep features, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5455\u20135463.","DOI":"10.1109\/CVPR.2015.7299184"},{"key":"10.1016\/j.jvcir.2024.104268_b17","doi-asserted-by":"crossref","unstructured":"R. Zhao, W. Ouyang, H. Li, X. Wang, Saliency detection by multi-context deep learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1265\u20131274.","DOI":"10.1109\/CVPR.2015.7298731"},{"key":"10.1016\/j.jvcir.2024.104268_b18","doi-asserted-by":"crossref","unstructured":"G. Lee, Y.-W. Tai, J. Kim, Deep saliency with encoded low level distance map and high level features, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 660\u2013668.","DOI":"10.1109\/CVPR.2016.78"},{"key":"10.1016\/j.jvcir.2024.104268_b19","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1007\/s11263-015-0822-0","article-title":"Supercnn: A superpixelwise convolutional neural network for salient object detection","volume":"115","author":"He","year":"2015","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.jvcir.2024.104268_b20","doi-asserted-by":"crossref","unstructured":"Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, P.H. Torr, Deeply supervised salient object detection with short connections, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3203\u20133212.","DOI":"10.1109\/CVPR.2017.563"},{"key":"10.1016\/j.jvcir.2024.104268_b21","doi-asserted-by":"crossref","unstructured":"T.-Y. Lin, P. Doll\u00e1r, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117\u20132125.","DOI":"10.1109\/CVPR.2017.106"},{"key":"10.1016\/j.jvcir.2024.104268_b22","doi-asserted-by":"crossref","unstructured":"N. Liu, J. Han, Dhsnet: Deep hierarchical saliency network for salient object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 678\u2013686.","DOI":"10.1109\/CVPR.2016.80"},{"key":"10.1016\/j.jvcir.2024.104268_b23","series-title":"Computer Vision\u2013ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part II 12","first-page":"101","article-title":"Depth matters: Influence of depth cues on visual saliency","author":"Lang","year":"2012"},{"key":"10.1016\/j.jvcir.2024.104268_b24","series-title":"2014 19th International Conference on Digital Signal Processing","first-page":"454","article-title":"Salient region detection for stereoscopic images","author":"Fan","year":"2014"},{"journal-title":"IEEE Trans. Circuits Syst. Video Technol.","article-title":"HRTransNet: HRFormer-driven two-modality salient object detection","year":"2022","author":"Tang","key":"10.1016\/j.jvcir.2024.104268_b25"},{"key":"10.1016\/j.jvcir.2024.104268_b26","doi-asserted-by":"crossref","first-page":"6800","DOI":"10.1109\/TIP.2022.3216198","article-title":"CIR-Net: Cross-modality interaction and refinement for RGB-D salient object detection","volume":"31","author":"Cong","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b27","doi-asserted-by":"crossref","unstructured":"T. Zhou, H. Fu, G. Chen, Y. Zhou, D.-P. Fan, L. Shao, Specificity-preserving RGB-D saliency detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 4681\u20134691.","DOI":"10.1109\/ICCV48922.2021.00464"},{"key":"10.1016\/j.jvcir.2024.104268_b28","series-title":"2021 IEEE International Conference on Multimedia and Expo","first-page":"1","article-title":"BTS-net: Bi-directional transfer-and-selection network for RGB-d salient object detection","author":"Zhang","year":"2021"},{"key":"10.1016\/j.jvcir.2024.104268_b29","series-title":"European Conference on Computer Vision","first-page":"630","article-title":"Spsn: Superpixel prototype sampling network for rgb-d salient object detection","author":"Lee","year":"2022"},{"key":"10.1016\/j.jvcir.2024.104268_b30","doi-asserted-by":"crossref","DOI":"10.1109\/TIP.2023.3315511","article-title":"Depth injection framework for RGBD salient object detection","author":"Yao","year":"2023","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b31","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.jvcir.2024.104268_b32","doi-asserted-by":"crossref","unstructured":"S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3\u201319.","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10.1016\/j.jvcir.2024.104268_b33","series-title":"Computer Vision\u2013ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III 13","first-page":"92","article-title":"RGBD salient object detection: A benchmark and algorithms","author":"Peng","year":"2014"},{"key":"10.1016\/j.jvcir.2024.104268_b34","doi-asserted-by":"crossref","unstructured":"Y. Piao, W. Ji, J. Li, M. Zhang, H. Lu, Depth-induced multi-scale recurrent attention network for saliency detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 7254\u20137263.","DOI":"10.1109\/ICCV.2019.00735"},{"key":"10.1016\/j.jvcir.2024.104268_b35","doi-asserted-by":"crossref","unstructured":"N. Li, J. Ye, Y. Ji, H. Ling, J. Yu, Saliency detection on light field, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2806\u20132813.","DOI":"10.1109\/CVPR.2014.359"},{"key":"10.1016\/j.jvcir.2024.104268_b36","doi-asserted-by":"crossref","unstructured":"C. Zhu, G. Li, A three-pathway psychobiological framework of salient object detection using stereoscopic technology, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017, pp. 3008\u20133014.","DOI":"10.1109\/ICCVW.2017.355"},{"key":"10.1016\/j.jvcir.2024.104268_b37","series-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"454","article-title":"Leveraging stereopsis for saliency analysis","author":"Niu","year":"2012"},{"key":"10.1016\/j.jvcir.2024.104268_b38","doi-asserted-by":"crossref","unstructured":"D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, A. Borji, Structure-measure: A new way to evaluate foreground maps, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4548\u20134557.","DOI":"10.1109\/ICCV.2017.487"},{"key":"10.1016\/j.jvcir.2024.104268_b39","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1597","article-title":"Frequency-tuned salient region detection","author":"Achanta","year":"2009"},{"year":"2018","series-title":"Enhanced-alignment measure for binary foreground map evaluation","author":"Fan","key":"10.1016\/j.jvcir.2024.104268_b40"},{"issue":"12","key":"10.1016\/j.jvcir.2024.104268_b41","doi-asserted-by":"crossref","first-page":"5706","DOI":"10.1109\/TIP.2015.2487833","article-title":"Salient object detection: A benchmark","volume":"24","author":"Borji","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b42","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part VIII 16","first-page":"520","article-title":"Progressively guided alternate refinement network for RGB-d salient object detection","author":"Chen","year":"2020"},{"key":"10.1016\/j.jvcir.2024.104268_b43","doi-asserted-by":"crossref","unstructured":"J. Zhang, D.-P. Fan, Y. Dai, S. Anwar, F.S. Saleh, T. Zhang, N. Barnes, UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8582\u20138591.","DOI":"10.1109\/CVPR42600.2020.00861"},{"key":"10.1016\/j.jvcir.2024.104268_b44","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXII 16","first-page":"646","article-title":"A single stream network for robust and real-time RGB-d salient object detection","author":"Zhao","year":"2020"},{"key":"10.1016\/j.jvcir.2024.104268_b45","doi-asserted-by":"crossref","unstructured":"K. Fu, D.-P. Fan, G.-P. Ji, Q. Zhao, JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3052\u20133062.","DOI":"10.1109\/CVPR42600.2020.00312"},{"key":"10.1016\/j.jvcir.2024.104268_b46","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXV 16","first-page":"235","article-title":"Hierarchical dynamic filtering network for RGB-d salient object detection","author":"Pang","year":"2020"},{"key":"10.1016\/j.jvcir.2024.104268_b47","doi-asserted-by":"crossref","first-page":"8727","DOI":"10.1109\/TIP.2021.3116793","article-title":"Bifurcated backbone strategy for RGB-D salient object detection","volume":"30","author":"Zhai","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jvcir.2024.104268_b48","doi-asserted-by":"crossref","unstructured":"W. Zhang, G.-P. Ji, Z. Wang, K. Fu, Q. Zhao, Depth quality-inspired feature manipulation for efficient RGB-D salient object detection, in: Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 731\u2013740.","DOI":"10.1145\/3474085.3475240"},{"key":"10.1016\/j.jvcir.2024.104268_b49","doi-asserted-by":"crossref","unstructured":"W. Ji, J. Li, S. Yu, M. Zhang, Y. Piao, S. Yao, Q. Bi, K. Ma, Y. Zheng, H. Lu, et al., Calibrated RGB-D salient object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9471\u20139481.","DOI":"10.1109\/CVPR46437.2021.00935"},{"key":"10.1016\/j.jvcir.2024.104268_b50","doi-asserted-by":"crossref","unstructured":"X. Zhao, Y. Pang, L. Zhang, H. Lu, X. Ruan, Self-supervised pretraining for rgb-d salient object detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, No. 3, 2022, pp. 3463\u20133471.","DOI":"10.1609\/aaai.v36i3.20257"},{"journal-title":"IEEE Trans. Multimed.","article-title":"C2DFNet: Criss-cross dynamic filter network for RGB-D salient object detection","year":"2022","author":"Zhang","key":"10.1016\/j.jvcir.2024.104268_b51"},{"key":"10.1016\/j.jvcir.2024.104268_b52","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1109\/TIP.2023.3234702","article-title":"CAVER: Cross-modal view-mixed transformer for bi-modal salient object detection","volume":"32","author":"Pang","year":"2023","journal-title":"IEEE Trans. Image Process."}],"container-title":["Journal of Visual Communication and Image Representation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320324002244?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320324002244?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T19:38:20Z","timestamp":1730662700000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1047320324002244"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":52,"alternative-id":["S1047320324002244"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.jvcir.2024.104268","relation":{},"ISSN":["1047-3203"],"issn-type":[{"type":"print","value":"1047-3203"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Progressive cross-level fusion network for RGB-D salient object detection","name":"articletitle","label":"Article Title"},{"value":"Journal of Visual Communication and Image Representation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jvcir.2024.104268","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"104268"}}