{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T15:01:27Z","timestamp":1719932487931},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,7,1]],"date-time":"2016-07-01T00:00:00Z","timestamp":1467331200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"publisher","award":["61572033","71371012"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Natural Science Foundation of Education Department of Anhui Province of China","award":["KJ2015ZD08"]},{"name":"Social Science and Humanity Foundation of the Ministry of Education of China","award":["13YJA630098"]},{"DOI":"10.13039\/501100003995","name":"Anhui Provincial Natural Science Foundation","doi-asserted-by":"publisher","award":["1308085MF95"],"id":[{"id":"10.13039\/501100003995","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Visual Communication and Image Representation"],"published-print":{"date-parts":[[2016,7]]},"DOI":"10.1016\/j.jvcir.2016.02.004","type":"journal-article","created":{"date-parts":[[2016,2,13]],"date-time":"2016-02-13T13:43:23Z","timestamp":1455371003000},"page":"11-17","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Spare L1-norm-based maximum margin criterion"],"prefix":"10.1016","volume":"38","author":[{"given":"Gui-Fu","family":"Lu","sequence":"first","affiliation":[]},{"given":"Ganyi","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Zou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jvcir.2016.02.004_b0005","series-title":"Pattern Classification","author":"Duda","year":"2000"},{"issue":"1","key":"10.1016\/j.jvcir.2016.02.004_b0010","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/34.824819","article-title":"Statistical pattern recognition: a review","volume":"22","author":"Jain","year":"2000","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2016.02.004_b0015","series-title":"Introduction to Statistical Pattern Recognition","author":"Fukunaga","year":"1990"},{"issue":"7","key":"10.1016\/j.jvcir.2016.02.004_b0020","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1109\/34.598228","article-title":"Eigenfaces vs. Fisherfaces: recognition using class specific linear projection","volume":"19","author":"Belhumeour","year":"1997","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.jvcir.2016.02.004_b0025","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.1016\/S0031-3203(99)00139-9","article-title":"A new LDA-based face recognition system which can solve the small sample size problem","volume":"33","author":"Chen","year":"2000","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.jvcir.2016.02.004_b0030","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1016\/S0031-3203(02)00048-1","article-title":"Why can LDA be performed in PCA transformed space?","volume":"36","author":"Yang","year":"2003","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.jvcir.2016.02.004_b0035","unstructured":"H. Li, T. Jiang, K. Zhang, Efficient and robust feature extraction by maximum margin criterion, in: Advances in Neural Information Processing Systems, 2003."},{"issue":"1","key":"10.1016\/j.jvcir.2016.02.004_b0040","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1109\/TNN.2005.860852","article-title":"Efficient and robust feature extraction by maximum margin criterion","volume":"17","author":"Li","year":"2006","journal-title":"IEEE Trans. Neural Networks"},{"issue":"6","key":"10.1016\/j.jvcir.2016.02.004_b0045","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.1109\/TSMCB.2007.906579","article-title":"A multiple maximum scatter difference discriminant criterion for facial feature extraction","volume":"37","author":"Song","year":"2007","journal-title":"IEEE Trans. Syst., Man, Cybernet. \u2013 Part B: Cybernet."},{"issue":"6","key":"10.1016\/j.jvcir.2016.02.004_b0050","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1109\/TNN.2007.900813","article-title":"Comments on efficient and robust maximal margin criterion","volume":"18","author":"Liu","year":"2007","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.jvcir.2016.02.004_b0055","unstructured":"C. Xu, D. Tao, C. Xu, Y. Rui, Large-margin weakly supervised dimensionality reduction, in: Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014, pp. 865\u2013873."},{"issue":"8","key":"10.1016\/j.jvcir.2016.02.004_b0060","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1109\/TPAMI.2013.2296528","article-title":"Large-margin multi-view information bottleneck","volume":"36","author":"Xu","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2016.02.004_b0065","doi-asserted-by":"crossref","unstructured":"C. Xu, D. Tao, C. Xu, Large-margin multi-label casual feature learning, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 1924\u20131930.","DOI":"10.1609\/aaai.v29i1.9450"},{"key":"10.1016\/j.jvcir.2016.02.004_b0070","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1126\/science.290.5500.2319","article-title":"A global geometric framework for nonlinear dimensionality reduction","volume":"290","author":"Tenenbaum","year":"2000","journal-title":"Science"},{"issue":"6","key":"10.1016\/j.jvcir.2016.02.004_b0075","doi-asserted-by":"crossref","first-page":"1373","DOI":"10.1162\/089976603321780317","article-title":"Laplacian eigenmaps for dimensionality reduction and data representation","volume":"15","author":"Belkin","year":"2003","journal-title":"Neural Comput."},{"issue":"4","key":"10.1016\/j.jvcir.2016.02.004_b0080","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1109\/TMM.2013.2238909","article-title":"Hessian regularized support vector machines for mobile image annotation on the cloud","volume":"15","author":"Tao","year":"2013","journal-title":"IEEE Trans. Multimedia"},{"issue":"5","key":"10.1016\/j.jvcir.2016.02.004_b0085","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.sigpro.2014.08.002","article-title":"Multiview Hessian regularized logistic regression for action recognition","volume":"110","author":"Liu","year":"2015","journal-title":"Signal Process."},{"issue":"9","key":"10.1016\/j.jvcir.2016.02.004_b0090","doi-asserted-by":"crossref","first-page":"1672","DOI":"10.1109\/TPAMI.2008.114","article-title":"Principal component analysis based on L1-norm maximization","volume":"30","author":"Kwak","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2016.02.004_b0095","doi-asserted-by":"crossref","unstructured":"T. Liu, D. Tao, On the robustness and generalization of Cauchy regression, in: 4th IEEE International Conference on Information Science and Technology (ICIST), Shenzhen, 2014, pp. 100\u2013105.","DOI":"10.1109\/ICIST.2014.6920341"},{"key":"10.1016\/j.jvcir.2016.02.004_b0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNNLS.2014.2375591","article-title":"On the performance of Manhattan nonnegative matrix factorization","author":"Liu","year":"2015","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"issue":"4","key":"10.1016\/j.jvcir.2016.02.004_b0105","first-page":"1170","article-title":"L1-norm-based 2DPCA","volume":"40","author":"Li","year":"2009","journal-title":"IEEE Trans. Syst., Man, Cybernet. \u2013 Part B: Cybernet."},{"key":"10.1016\/j.jvcir.2016.02.004_b0110","unstructured":"C. Ding, D. Zhou, X. He, H. Zha, R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization, in: Proceedings of the 23rd Internal Conference on Machine Learning, June 2006, pp. 281\u2013288."},{"key":"10.1016\/j.jvcir.2016.02.004_b0115","unstructured":"Q. Ke, T. Kanade, Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2005, pp. 1\u20138."},{"issue":"2","key":"10.1016\/j.jvcir.2016.02.004_b0120","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1109\/TCSVT.2009.2020337","article-title":"Robust tensor analysis with L1-norm","volume":"20","author":"Pang","year":"2010","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"10.1016\/j.jvcir.2016.02.004_b0125","unstructured":"F. Nie, H. Huang, C. Ding, D. Luo, H. Wang, Principal component analysis with non-greedy L1-norm maximization, in: The 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, 2011, pp. 1\u20136."},{"issue":"8","key":"10.1016\/j.jvcir.2016.02.004_b0130","doi-asserted-by":"crossref","first-page":"3018","DOI":"10.1109\/TIP.2013.2253476","article-title":"Linear discriminant analysis based on L1-norm maximization","volume":"22","author":"Zhong","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"73","key":"10.1016\/j.jvcir.2016.02.004_b0135","doi-asserted-by":"crossref","first-page":"2571","DOI":"10.1016\/j.neucom.2010.05.016","article-title":"Linear discriminant analysis using rotational invariant L1 norm","volume":"13\u201315","author":"Li","year":"2010","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.jvcir.2016.02.004_b0140","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1109\/TBME.2011.2177523","article-title":"L1-norm-based common spatial patterns","volume":"59","author":"Wang","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.jvcir.2016.02.004_b0145","doi-asserted-by":"crossref","first-page":"793","DOI":"10.1109\/TNNLS.2013.2281428","article-title":"L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction","volume":"25","author":"Zheng","year":"2014","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"issue":"6","key":"10.1016\/j.jvcir.2016.02.004_b0150","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TCYB.2013.2273355","article-title":"Fisher discriminant analysis with L1-norm","volume":"44","author":"Wang","year":"2014","journal-title":"IEEE Trans. Cybernet."},{"key":"10.1016\/j.jvcir.2016.02.004_b0155","article-title":"Classification with noisy labels by importance reweighting","author":"Liu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"10.1016\/j.jvcir.2016.02.004_b0160","doi-asserted-by":"crossref","first-page":"2531","DOI":"10.1109\/TPAMI.2015.2417578","article-title":"Multi-view intact space learning","volume":"37","author":"Xu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.jvcir.2016.02.004_b0165","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1109\/JPROC.2010.2044470","article-title":"Sparse representation for computer vision and pattern recognition","volume":"98","author":"Wright","year":"2010","journal-title":"Proc. IEEE"},{"issue":"2","key":"10.1016\/j.jvcir.2016.02.004_b0170","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1198\/106186006X113430","article-title":"Sparse principal component analysis","volume":"15","author":"Zou","year":"2006","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.jvcir.2016.02.004_b0175","unstructured":"R. Jenatton, G. Obozinski, F. Bach, Structured sparse principal component analysis, in: Proceeding of the 13th International Conference on Artificial Intelligence and Statistics, 2010, pp. 366\u2013373."},{"key":"10.1016\/j.jvcir.2016.02.004_b0180","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.neucom.2005.06.004","article-title":"(2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition","volume":"69","author":"Zhang","year":"2006","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.jvcir.2016.02.004_b0185","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1109\/TPAMI.2007.250598","article-title":"Graph embedding and extensions: a general framework for dimensionality reduction","volume":"29","author":"Yan","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.jvcir.2016.02.004_b0190","doi-asserted-by":"crossref","unstructured":"D. Cai, X. He, J. Han, Spectral regression: a unified approach for sparse subspace learning, in: Proceeding of the 2007 International Conference on Data Mining (ICDM 07), Omaha, NE, 2007, pp. 73\u201387.","DOI":"10.1109\/ICDM.2007.89"},{"key":"10.1016\/j.jvcir.2016.02.004_b0195","unstructured":"D. Cai, X. He, J. Han, Sparse projections over graph, in: Proceedings of the 21st AAAI Conference on Artificial Intelligence, 2008."},{"key":"10.1016\/j.jvcir.2016.02.004_b0200","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1007\/s10618-010-0182-x","article-title":"Manifold elastic net: a unified framework for sparse dimension reduction","volume":"22","author":"Zhou","year":"2011","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.jvcir.2016.02.004_b0205","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.neunet.2011.11.003","article-title":"Structured sparse linear graph embedding","volume":"27","author":"Wang","year":"2012","journal-title":"Neural Networks"},{"issue":"1","key":"10.1016\/j.jvcir.2016.02.004_b0210","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.patcog.2011.07.009","article-title":"Improve robustness of sparse PCA by L1-norm maximization","volume":"45","author":"Meng","year":"2012","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.jvcir.2016.02.004_b0215","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.neunet.2013.06.002","article-title":"2DPCA with L1-norm for simultaneously robust and sparse modelling","volume":"46","author":"Wang","year":"2013","journal-title":"Neural Networks"},{"key":"10.1016\/j.jvcir.2016.02.004_b0220","doi-asserted-by":"crossref","unstructured":"H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Advances in Neural Information Processing Systems, 2006, pp. 801\u2013808.","DOI":"10.7551\/mitpress\/7503.003.0105"},{"issue":"1","key":"10.1016\/j.jvcir.2016.02.004_b0225","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.cviu.2013.03.007","article-title":"Multiview Hessian discriminative sparse coding for image annotation","volume":"118","author":"Liu","year":"2014","journal-title":"Comput. Vision Image Underst."},{"key":"10.1016\/j.jvcir.2016.02.004_b0230","series-title":"Matrix Computations","author":"Golub","year":"1996"}],"container-title":["Journal of Visual Communication and Image Representation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320316000304?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1047320316000304?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,8,16]],"date-time":"2023-08-16T17:29:02Z","timestamp":1692206942000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1047320316000304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,7]]},"references-count":46,"alternative-id":["S1047320316000304"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.jvcir.2016.02.004","relation":{},"ISSN":["1047-3203"],"issn-type":[{"value":"1047-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2016,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Spare L1-norm-based maximum margin criterion","name":"articletitle","label":"Article Title"},{"value":"Journal of Visual Communication and Image Representation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jvcir.2016.02.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}