iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.JKSUCI.2024.101916
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:06:46Z","timestamp":1719792406850},"reference-count":44,"publisher":"Elsevier BV","issue":"2","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T00:00:00Z","timestamp":1704326400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100008462","name":"Fujian University of Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008462","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of King Saud University - Computer and Information Sciences"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.jksuci.2024.101916","type":"journal-article","created":{"date-parts":[[2024,1,21]],"date-time":"2024-01-21T07:33:31Z","timestamp":1705822411000},"page":"101916","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"title":["Advancing speed limit detection in ADAS: A novel data-driven approach using Pareto-GBDTMO"],"prefix":"10.1016","volume":"36","author":[{"given":"Xu","family":"Luo","sequence":"first","affiliation":[]},{"given":"Fumin","family":"Zou","sequence":"additional","affiliation":[]},{"given":"Qiang","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Sijie","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Huan","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Na","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Xinjian","family":"Cai","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jksuci.2024.101916_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.aap.2023.107075","article-title":"\u201cI did not see that coming\u201d: A latent variable structural equation model for understanding the effect of road predictability on crashes along horizontal curves","volume":"187","author":"Afghari","year":"2023","journal-title":"Accid. Anal. Prev."},{"key":"10.1016\/j.jksuci.2024.101916_b2","doi-asserted-by":"crossref","unstructured":"Arik, S.\u00d6., Pfister, T., 2021. Tabnet: Attentive interpretable tabular learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, no. 8. pp. 6679\u20136687.","DOI":"10.1609\/aaai.v35i8.16826"},{"key":"10.1016\/j.jksuci.2024.101916_b3","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1007\/s10489-020-01801-5","article-title":"Transfer learning based hybrid 2D-3D CNN for traffic sign recognition and semantic road detection applied in advanced driver assistance systems","volume":"51","author":"Bayoudh","year":"2021","journal-title":"Appl. Intell."},{"key":"10.1016\/j.jksuci.2024.101916_b4","doi-asserted-by":"crossref","first-page":"3069","DOI":"10.1007\/s13042-020-01185-5","article-title":"Improved VGG model-based efficient traffic sign recognition for safe driving in 5G scenarios","volume":"12","author":"Bi","year":"2021","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.jksuci.2024.101916_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117215","article-title":"Comprehensive comparative study of multi-label classification methods","volume":"203","author":"Bogatinovski","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.jksuci.2024.101916_b6","first-page":"1","article-title":"A real-time and high-precision method for small traffic-signs recognition","author":"Chen","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.jksuci.2024.101916_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2020.102920","article-title":"Traffic congestion and travel time prediction based on historical congestion maps and identification of consensual days","volume":"124","author":"Chiabaut","year":"2021","journal-title":"Transp. Res. C"},{"issue":"10","key":"10.1016\/j.jksuci.2024.101916_b8","first-page":"1427","article-title":"A real-time speed limit sign recognition algorithm based on network","volume":"62","author":"Dai","year":"2022","journal-title":"Telecommun. Eng."},{"key":"10.1016\/j.jksuci.2024.101916_b9","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.ins.2021.11.052","article-title":"An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems","volume":"585","author":"Deng","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.jksuci.2024.101916_b10","doi-asserted-by":"crossref","first-page":"97228","DOI":"10.1109\/ACCESS.2021.3094201","article-title":"Yolo V4 for advanced traffic sign recognition with synthetic training data generated by various GAN","volume":"9","author":"Dewi","year":"2021","journal-title":"IEEE Access"},{"issue":"24","key":"10.1016\/j.jksuci.2024.101916_b11","doi-asserted-by":"crossref","first-page":"21465","DOI":"10.1007\/s00521-021-05982-z","article-title":"Synthetic data generation using DCGAN for improved traffic sign recognition","volume":"34","author":"Dewi","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.jksuci.2024.101916_b12","first-page":"1","article-title":"Robust detection method for improving small traffic sign recognition based on spatial pyramid pooling","author":"Dewi","year":"2021","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.jksuci.2024.101916_b13","doi-asserted-by":"crossref","first-page":"5920","DOI":"10.1109\/TIP.2021.3088605","article-title":"Learning to discover multi-class attentional regions for multi-label image recognition","volume":"30","author":"Gao","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.jksuci.2024.101916_b14","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1016\/j.ins.2021.09.052","article-title":"An efficient Pareto-based feature selection algorithm for multi-label classification","volume":"581","author":"Hashemi","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.jksuci.2024.101916_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.techfore.2022.122271","article-title":"Research on multi-label user classification of social media based on ML-KNN algorithm","volume":"188","author":"Huang","year":"2023","journal-title":"Technol. Forecast. Soc. Change"},{"key":"10.1016\/j.jksuci.2024.101916_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108259","article-title":"Learning common and label-specific features for multi-label classification with correlation information","volume":"121","author":"Li","year":"2022","journal-title":"Pattern Recognit."},{"issue":"05","key":"10.1016\/j.jksuci.2024.101916_b17","first-page":"118","article-title":"Recognition method of road speed limit information based on data mining of traffic trajectory","volume":"15","author":"Liao","year":"2015","journal-title":"J. Traff. Transp. Eng."},{"key":"10.1016\/j.jksuci.2024.101916_b18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2023.01.131","article-title":"GNN-based long and short term preference modeling for next-location prediction","volume":"629","author":"Liu","year":"2023","journal-title":"Inform. Sci."},{"key":"10.1016\/j.jksuci.2024.101916_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2020.102700","article-title":"Cascade saccade machine learning network with hierarchical classes for traffic sign detection","volume":"67","author":"Liu","year":"2021","journal-title":"Sustainable Cities Soc."},{"key":"10.1016\/j.jksuci.2024.101916_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108584","article-title":"MoRE: Multi-output residual embedding for multi-label classification","volume":"126","author":"Liu","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.jksuci.2024.101916_b21","article-title":"Robust label and feature space co-learning for multi-label classification","author":"Liu","year":"2023","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"10.1016\/j.jksuci.2024.101916_b22","doi-asserted-by":"crossref","first-page":"5615","DOI":"10.1109\/TITS.2021.3055258","article-title":"Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method","volume":"23","author":"Ma","year":"2021","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.jksuci.2024.101916_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106966","article-title":"Multi-objective PSO based online feature selection for multi-label classification","volume":"222","author":"Paul","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.jksuci.2024.101916_b24","first-page":"2650","article-title":"Deep learning-based framework for robust traffic sign detection under challenging weather conditions","author":"Puli","year":"2023","journal-title":"J. Surv. Fish. Sci."},{"key":"10.1016\/j.jksuci.2024.101916_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110545","article-title":"Label correlation embedding guided network for multi-label ECG arrhythmia diagnosis","volume":"270","author":"Ran","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.jksuci.2024.101916_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.aap.2023.107113","article-title":"Multi-vehicle safety functions for freeway weaving segments using lane-level traffic data","volume":"188","author":"Rim","year":"2023","journal-title":"Accid. Anal. Prev."},{"issue":"1","key":"10.1016\/j.jksuci.2024.101916_b27","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","article-title":"Taking the human out of the loop: A review of Bayesian optimization","volume":"104","author":"Shahriari","year":"2015","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.jksuci.2024.101916_b28","series-title":"International Conference on Machine Learning","first-page":"3182","article-title":"Gradient boosted decision trees for high dimensional sparse output","author":"Si","year":"2017"},{"key":"10.1016\/j.jksuci.2024.101916_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.applthermaleng.2023.120386","article-title":"Inadequate load output diagnosis of ultra-supercritical thermal power units based on MIWOA multi-label random forest","volume":"227","author":"Tang","year":"2023","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.jksuci.2024.101916_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.107965","article-title":"A review of methods for imbalanced multi-label classification","volume":"118","author":"Tarekegn","year":"2021","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.jksuci.2024.101916_b31","doi-asserted-by":"crossref","first-page":"7853","DOI":"10.1007\/s00521-022-08077-5","article-title":"Improved YOLOv5 network for real-time multi-scale traffic sign detection","volume":"35","author":"Wang","year":"2023","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.jksuci.2024.101916_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107583","article-title":"Active k-labelsets ensemble for multi-label classification","volume":"109","author":"Wang","year":"2021","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.jksuci.2024.101916_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2020.102441","article-title":"A novel reasoning mechanism for multi-label text classification","volume":"58","author":"Wang","year":"2021","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.jksuci.2024.101916_b34","doi-asserted-by":"crossref","first-page":"124963","DOI":"10.1109\/ACCESS.2021.3109798","article-title":"An improved light-weight traffic sign recognition algorithm based on YOLOv4-tiny","volume":"9","author":"Wang","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.jksuci.2024.101916_b35","series-title":"Research and Implementation of Speed Limit Sign Recognition Algorithm Based on Deep Learning","author":"Wu","year":"2022"},{"key":"10.1016\/j.jksuci.2024.101916_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2020.102649","article-title":"Differential variable speed limits control for freeway recurrent bottlenecks via deep actor-critic algorithm","volume":"117","author":"Wu","year":"2020","journal-title":"Transp. Res. Part C: Emerg. Technol."},{"key":"10.1016\/j.jksuci.2024.101916_b37","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1016\/j.ins.2020.06.017","article-title":"Multi-label classification with weighted classifier selection and stacked ensemble","volume":"557","author":"Xia","year":"2021","journal-title":"Inform. Sci."},{"issue":"9","key":"10.1016\/j.jksuci.2024.101916_b38","doi-asserted-by":"crossref","first-page":"9980","DOI":"10.1109\/TVT.2022.3178808","article-title":"Efficient federated learning with spike neural networks for traffic sign recognition","volume":"71","author":"Xie","year":"2022","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"9","key":"10.1016\/j.jksuci.2024.101916_b39","first-page":"5199","article-title":"Multi-label classification with label-specific feature generation: A wrapped approach","volume":"44","author":"Yu","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.jksuci.2024.101916_b40","doi-asserted-by":"crossref","first-page":"3156","DOI":"10.1109\/TNNLS.2020.3009776","article-title":"GBDT-MO: Gradient-boosted decision trees for multiple outputs","volume":"32","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.jksuci.2024.101916_b41","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.neucom.2020.07.107","article-title":"Multi-label learning with label-specific features via weighting and label entropy guided clustering ensemble","volume":"419","author":"Zhang","year":"2021","journal-title":"Neurocomputing"},{"issue":"7","key":"10.1016\/j.jksuci.2024.101916_b42","doi-asserted-by":"crossref","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","article-title":"ML-KNN: A lazy learning approach to multi-label learning","volume":"40","author":"Zhang","year":"2007","journal-title":"Patt. Recogn."},{"key":"10.1016\/j.jksuci.2024.101916_b43","article-title":"CCTSDB 2021: A more comprehensive traffic sign detection benchmark","volume":"12","author":"Zhang","year":"2022","journal-title":"Hum.-Centric Comput. Inform. Sci."},{"issue":"13","key":"10.1016\/j.jksuci.2024.101916_b44","doi-asserted-by":"crossref","first-page":"17779","DOI":"10.1007\/s11042-022-12163-0","article-title":"Traffic sign recognition based on deep learning","volume":"81","author":"Zhu","year":"2022","journal-title":"Multimedia Tools Appl."}],"container-title":["Journal of King Saud University - Computer and Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1319157824000053?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1319157824000053?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,30]],"date-time":"2024-06-30T06:12:02Z","timestamp":1719727922000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1319157824000053"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":44,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2024,2]]}},"alternative-id":["S1319157824000053"],"URL":"https:\/\/doi.org\/10.1016\/j.jksuci.2024.101916","relation":{},"ISSN":["1319-1578"],"issn-type":[{"value":"1319-1578","type":"print"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Advancing speed limit detection in ADAS: A novel data-driven approach using Pareto-GBDTMO","name":"articletitle","label":"Article Title"},{"value":"Journal of King Saud University - Computer and Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jksuci.2024.101916","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Fujian University of Technology. Published by Elsevier B.V. on behalf of King Saud University.","name":"copyright","label":"Copyright"}],"article-number":"101916"}}