{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:33:29Z","timestamp":1728534809359},"reference-count":55,"publisher":"Elsevier BV","issue":"1","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,16]],"date-time":"2022-11-16T00:00:00Z","timestamp":1668556800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002701","name":"Ministry of Education","doi-asserted-by":"publisher","award":["2021R1I1A1A01052299"],"id":[{"id":"10.13039\/501100002701","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of King Saud University - Computer and Information Sciences"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.jksuci.2022.11.007","type":"journal-article","created":{"date-parts":[[2022,11,29]],"date-time":"2022-11-29T18:31:56Z","timestamp":1669746716000},"page":"131-144","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"title":["A Fuzzy-Based Duo-Secure Multi-Modal Framework for IoMT Anomaly Detection"],"prefix":"10.1016","volume":"35","author":[{"given":"Shiraz Ali","family":"Wagan","sequence":"first","affiliation":[]},{"given":"Jahwan","family":"Koo","sequence":"additional","affiliation":[]},{"given":"Isma Farah","family":"Siddiqui","sequence":"additional","affiliation":[]},{"given":"Nawab Muhammad Faseeh","family":"Qureshi","sequence":"additional","affiliation":[]},{"given":"Muhammad","family":"Attique","sequence":"additional","affiliation":[]},{"given":"Dong Ryeol","family":"Shin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jksuci.2022.11.007_b0005","doi-asserted-by":"crossref","first-page":"48948","DOI":"10.1109\/ACCESS.2019.2910087","article-title":"Ontology-based security recommendation for the internet of medical things","volume":"7","author":"Alsubaei","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jksuci.2022.11.007_b0010","article-title":"Artifact removal using deep wvfln for brain signal diagnosis through iomt","volume":"100465","author":"Behera","year":"2022","journal-title":"Measurement: Sensors"},{"year":"2013","series-title":"Pattern Recognition with Fuzzy Objective Function Algorithms","author":"Bezdek","key":"10.1016\/j.jksuci.2022.11.007_b0015"},{"key":"10.1016\/j.jksuci.2022.11.007_b0020","doi-asserted-by":"crossref","first-page":"219","DOI":"10.3390\/electronics9020219","article-title":"A novel pca-firefly based xgboost classification model for intrusion detection in networks using gpu","volume":"9","author":"Bhattacharya","year":"2020","journal-title":"Electronics"},{"key":"10.1016\/j.jksuci.2022.11.007_b0025","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1541880.1541882","article-title":"Anomaly detection: A survey","volume":"41","author":"Chandola","year":"2009","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"10.1016\/j.jksuci.2022.11.007_b0030","doi-asserted-by":"crossref","unstructured":"Cho, 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.","DOI":"10.3115\/v1\/D14-1179"},{"key":"10.1016\/j.jksuci.2022.11.007_b0035","series-title":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"3422","article-title":"Large-scale malware classification using random projections and neural networks","author":"Dahl","year":"2013"},{"key":"10.1016\/j.jksuci.2022.11.007_b0040","doi-asserted-by":"crossref","unstructured":"Firdausi, 2010. Analysis of machine learning techniques used in behavior-based malware detection. In: 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, IEEE. pp. 201\u2013203.","DOI":"10.1109\/ACT.2010.33"},{"key":"10.1016\/j.jksuci.2022.11.007_b0045","doi-asserted-by":"crossref","first-page":"e235","DOI":"10.1002\/spy2.235","article-title":"Security in iomt-driven smart healthcare: A comprehensive review and open challenges","volume":"5","author":"Garg","year":"2022","journal-title":"Security Privacy"},{"journal-title":"J. King Saud Univ.-Comput. Informat. Sci.","article-title":"Cooperative communication resource allocation strategies for 5g and beyond networks: A review of architecture, challenges and opportunities","year":"2022","author":"Guo","key":"10.1016\/j.jksuci.2022.11.007_b0050"},{"key":"10.1016\/j.jksuci.2022.11.007_b0055","doi-asserted-by":"crossref","unstructured":"Gupta, 2017. Proids: Probabilistic data structures based intrusion detection system for network traffic monitoring. In: GLOBECOM 2017\u20132017 IEEE Global Communications Conference, IEEE. pp. 1\u20136.","DOI":"10.1109\/GLOCOM.2017.8254439"},{"key":"10.1016\/j.jksuci.2022.11.007_b0060","doi-asserted-by":"crossref","first-page":"106576","DOI":"10.1109\/ACCESS.2020.3000421","article-title":"Intrusion detection system for healthcare systems using medical and network data: A comparison study","volume":"8","author":"Hady","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.jksuci.2022.11.007_b0065","doi-asserted-by":"crossref","first-page":"69614","DOI":"10.1109\/ACCESS.2019.2914071","article-title":"Exact string matching algorithms: Survey, issues, and future research directions","volume":"7","author":"Hakak","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jksuci.2022.11.007_b0070","doi-asserted-by":"crossref","unstructured":"Haque, 2022. Deepcad: A stand-alone deep neural network-based framework for classification and anomaly detection in smart healthcare systems. In: 2022 IEEE International Conference on Digital Health (ICDH), IEEE. pp. 218\u2013227.","DOI":"10.1109\/ICDH55609.2022.00042"},{"key":"10.1016\/j.jksuci.2022.11.007_b0075","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.comnet.2018.11.025","article-title":"Current research on internet of things (iot) security: A survey","volume":"148","author":"Hassan","year":"2019","journal-title":"Comput. Networks"},{"key":"10.1016\/j.jksuci.2022.11.007_b0080","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.cmpb.2013.06.006","article-title":"Automatic segmentation of corpus collasum using gaussian mixture modeling and fuzzy c means methods","volume":"112","author":"\u0130\u00e7er","year":"2013","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.jksuci.2022.11.007_b0085","unstructured":"Japkowicz, N., 2000. The class imbalance problem: Significance and strategies. In: Proc. of the Int\u2014l Conf. on Artificial Intelligence, Citeseer. pp. 111\u2013117."},{"key":"10.1016\/j.jksuci.2022.11.007_b0090","doi-asserted-by":"crossref","first-page":"38597","DOI":"10.1109\/ACCESS.2019.2905633","article-title":"A deep learning method with filter based feature engineering for wireless intrusion detection system","volume":"7","author":"Kasongo","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jksuci.2022.11.007_b0095","doi-asserted-by":"crossref","unstructured":"Kaur, 2022. Computational intelligence and metaheuristic techniques for brain tumor detection through iomt-enabled mri devices. Wireless Commun. Mobile Comput. 2022.","DOI":"10.1155\/2022\/1519198"},{"key":"10.1016\/j.jksuci.2022.11.007_b0100","doi-asserted-by":"crossref","first-page":"e3530","DOI":"10.1002\/cnm.3530","article-title":"Efficient anomaly detection from medical signals and images with convolutional neural networks for internet of medical things (iomt) systems","volume":"38","author":"Khalil","year":"2022","journal-title":"Int. J. Num. Methods Biomed. Eng."},{"key":"10.1016\/j.jksuci.2022.11.007_b0105","doi-asserted-by":"crossref","unstructured":"Khan, 2019. An improved convolutional neural network model for intrusion detection in networks. In: 2019 Cybersecurity and Cyberforensics Conference (CCC), IEEE. pp. 74\u201377.","DOI":"10.1109\/CCC.2019.000-6"},{"key":"10.1016\/j.jksuci.2022.11.007_b0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13677-020-00195-6","article-title":"Iot-enabled directed acyclic graph in spark cluster","volume":"9","author":"Koo","year":"2020","journal-title":"J. Cloud Comput."},{"key":"10.1016\/j.jksuci.2022.11.007_b0115","doi-asserted-by":"crossref","unstructured":"Koo, J., 2022. Sahws: Iot-enabled workflow scheduler for next-generation hadoop cluster. In: 2022 Global Conference on Wireless and Optical Technologies (GCWOT), IEEE. pp. 1\u20134.","DOI":"10.1109\/GCWOT53057.2022.9772888"},{"key":"10.1016\/j.jksuci.2022.11.007_b0120","series-title":"Fourth International Congress on Information and Communication Technology","first-page":"471","article-title":"Deep learning approach for ids","author":"Liu","year":"2020"},{"key":"10.1016\/j.jksuci.2022.11.007_b0125","doi-asserted-by":"crossref","unstructured":"Lokshina, 2019. A qualitative evaluation of iot-driven ehealth: knowledge management, business models and opportunities, deployment and evolution. In: Data-centric Business and Applications. Springer, pp. 23\u201352.","DOI":"10.1007\/978-3-319-94117-2_2"},{"key":"10.1016\/j.jksuci.2022.11.007_b0130","unstructured":"Malhotra, 2016. Lstm-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148."},{"key":"10.1016\/j.jksuci.2022.11.007_b0135","doi-asserted-by":"crossref","unstructured":"M\u00f6ckl, 2020. Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network bgnet. Proc. Nat. Acad. Sci. 117, 60\u201367.","DOI":"10.1073\/pnas.1916219117"},{"key":"10.1016\/j.jksuci.2022.11.007_b0140","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.future.2016.02.020","article-title":"End-to-end security scheme for mobility enabled healthcare internet of things","volume":"64","author":"Moosavi","year":"2016","journal-title":"Future Generat. Comput. Syst."},{"key":"10.1016\/j.jksuci.2022.11.007_b0145","doi-asserted-by":"crossref","unstructured":"Nakip, M., Gelenbe, E., 2021. Mirai botnet attack detection with auto-associative dense random neural network. In: 2021 IEEE Global Communications Conference (GLOBECOM), IEEE. pp. 01\u201306.","DOI":"10.1109\/GLOBECOM46510.2021.9685306"},{"key":"10.1016\/j.jksuci.2022.11.007_b0150","doi-asserted-by":"crossref","first-page":"10495","DOI":"10.3390\/app122010495","article-title":"Predictive modeling of employee churn analysis for iot-enabled software industry","volume":"12","author":"Naz","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.jksuci.2022.11.007_b0155","series-title":"2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","first-page":"1","article-title":"Mining medical data","author":"Nedelcu","year":"2018"},{"key":"10.1016\/j.jksuci.2022.11.007_b0160","doi-asserted-by":"crossref","first-page":"5609","DOI":"10.32604\/cmc.2022.030235","article-title":"Ai-enabled grouping bridgehead to secure penetration topics of metaverse","volume":"73","author":"Park","year":"2022","journal-title":"Comput. Mater. Continua"},{"key":"10.1016\/j.jksuci.2022.11.007_b0165","doi-asserted-by":"crossref","DOI":"10.1109\/TAFFC.2022.3216782","article-title":"An effective 3d text recurrent voting generator for metaverse","author":"Park","year":"2022","journal-title":"IEEE Trans. Affective Comput."},{"key":"10.1016\/j.jksuci.2022.11.007_b0170","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.patrec.2022.03.021","article-title":"Scarcity-aware spam detection technique for big data ecosystem","volume":"157","author":"Park","year":"2022","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.jksuci.2022.11.007_b0175","doi-asserted-by":"crossref","first-page":"1610","DOI":"10.1001\/jama.2010.461","article-title":"Coronary artery calcium score and risk classification for coronary heart disease prediction","volume":"303","author":"Polonsky","year":"2010","journal-title":"Jama"},{"key":"10.1016\/j.jksuci.2022.11.007_b0180","doi-asserted-by":"crossref","unstructured":"Principi, 2017. Acoustic novelty detection with adversarial autoencoders. In: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE. pp. 3324\u20133330.","DOI":"10.1109\/IJCNN.2017.7966273"},{"key":"10.1016\/j.jksuci.2022.11.007_b0185","article-title":"Intelligent mapreduce technique for energy harvesting through iot devices","volume":"259","author":"Qureshi","year":"2022","journal-title":"Energy Harvest. Wireless Sensor Networks Internet Things"},{"key":"10.1016\/j.jksuci.2022.11.007_b0190","doi-asserted-by":"crossref","unstructured":"Rahmani, 2015. Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems. In: 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), IEEE. pp. 826\u2013834.","DOI":"10.1109\/CCNC.2015.7158084"},{"key":"10.1016\/j.jksuci.2022.11.007_b0195","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.comcom.2020.05.048","article-title":"An effective feature engineering for dnn using hybrid pca-gwo for intrusion detection in iomt architecture","volume":"160","author":"RM","year":"2020","journal-title":"Comput. Commun."},{"key":"10.1016\/j.jksuci.2022.11.007_b0200","unstructured":"Scribber, 2022. SMOTEENN \u2014 Version 0.9.0. URL: https:\/\/imbalanced-learn.org\/stable\/references\/generated\/imblearn.combine.SMOTEENN.html."},{"key":"10.1016\/j.jksuci.2022.11.007_b0205","doi-asserted-by":"crossref","unstructured":"Shaji, 2019. Predictionand diagnosis of heart disease patients using data mining technique. In: 2019 International Conference on Communication and Signal Processing (ICCSP), IEEE. pp. 0848\u20130852.","DOI":"10.1109\/ICCSP.2019.8697977"},{"key":"10.1016\/j.jksuci.2022.11.007_b0210","doi-asserted-by":"crossref","unstructured":"Shamili, 2010. Malware detection on mobile devices using distributed machine learning. In: 2010 20th International Conference on Pattern Recognition, IEEE. pp. 4348\u20134351.","DOI":"10.1109\/ICPR.2010.1057"},{"key":"10.1016\/j.jksuci.2022.11.007_b0215","doi-asserted-by":"crossref","first-page":"6226","DOI":"10.1109\/ACCESS.2019.2963797","article-title":"Iomt-based association rule mining for the prediction of human protein complexes","volume":"8","author":"Sikarndar","year":"2020","journal-title":"IEEE Access"},{"journal-title":"Int. J. Comput. Sci. Eng.","article-title":"Prediction of heart disease by clustering and classification techniques prediction of heart disease by clustering and classification techniques","year":"2019","author":"Singh","key":"10.1016\/j.jksuci.2022.11.007_b0220"},{"journal-title":"IEEE J. Biomed. Health Informat.","article-title":"Dew-cloud-based hierarchical federated learning for intrusion detection in iomt","year":"2022","author":"Singh","key":"10.1016\/j.jksuci.2022.11.007_b0225"},{"key":"10.1016\/j.jksuci.2022.11.007_b0230","series-title":"International Conference on Medical and Biological Engineering","first-page":"164","article-title":"Intrusion detection in smart healthcare using bagging ensemble classifier","author":"Subasi","year":"2021"},{"key":"10.1016\/j.jksuci.2022.11.007_b0235","doi-asserted-by":"crossref","first-page":"101685","DOI":"10.1016\/j.pmcj.2022.101685","article-title":"Multi-task learning neural networks for breath sound detection and classification in pervasive healthcare","volume":"86","author":"Tran-Anh","year":"2022","journal-title":"Pervasive Mobile Comput."},{"journal-title":"J. King Saud Univ.-Comput. Informat. Sci.","article-title":"Internet of medical things and trending converged technologies: A comprehensive review on real-time applications","year":"2022","author":"Wagan","key":"10.1016\/j.jksuci.2022.11.007_b0240"},{"key":"10.1016\/j.jksuci.2022.11.007_b0245","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.future.2020.02.054","article-title":"A deep learning based medical image segmentation technique in internet-of-medical-things domain","volume":"108","author":"Wang","year":"2020","journal-title":"Future Generat. Comput. Syst."},{"key":"10.1016\/j.jksuci.2022.11.007_b0250","doi-asserted-by":"crossref","unstructured":"Wang, 2022. Anomaly prediction of ct equipment based on iomt data.","DOI":"10.21203\/rs.3.rs-1548704\/v1"},{"key":"10.1016\/j.jksuci.2022.11.007_b0255","doi-asserted-by":"crossref","first-page":"182459","DOI":"10.1109\/ACCESS.2019.2960412","article-title":"Iomt malware detection approaches: analysis and research challenges","volume":"7","author":"Wazid","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.jksuci.2022.11.007_b0260","first-page":"7830","article-title":"Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of covid-19","volume":"34","author":"Wibowo","year":"2022","journal-title":"J. King Saud Univ.-Comput. Informat. Sci."},{"key":"10.1016\/j.jksuci.2022.11.007_b0265","doi-asserted-by":"crossref","first-page":"688","DOI":"10.1109\/TASE.2014.2378150","article-title":"Online steady-state detection for process control using multiple change-point models and particle filters","volume":"13","author":"Wu","year":"2015","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.jksuci.2022.11.007_b0270","doi-asserted-by":"crossref","first-page":"2528","DOI":"10.3390\/s19112528","article-title":"Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network","volume":"19","author":"Yang","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.jksuci.2022.11.007_b0275","unstructured":"Zhang, 2019. Deep adversarial learning in intrusion detection: A data augmentation enhanced framework. arXiv preprint arXiv:1901.07949."}],"container-title":["Journal of King Saud University - Computer and Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1319157822004050?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1319157822004050?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T18:02:35Z","timestamp":1728496955000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1319157822004050"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":55,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["S1319157822004050"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.jksuci.2022.11.007","relation":{},"ISSN":["1319-1578"],"issn-type":[{"type":"print","value":"1319-1578"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Fuzzy-Based Duo-Secure Multi-Modal Framework for IoMT Anomaly Detection","name":"articletitle","label":"Article Title"},{"value":"Journal of King Saud University - Computer and Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jksuci.2022.11.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.","name":"copyright","label":"Copyright"}]}}