{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T14:12:36Z","timestamp":1725804756072},"reference-count":27,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,3,27]],"date-time":"2020-03-27T00:00:00Z","timestamp":1585267200000},"content-version":"am","delay-in-days":300,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100006192","name":"ASCR","doi-asserted-by":"publisher","award":["FWP16-019471"],"id":[{"id":"10.13039\/100006192","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational Physics"],"published-print":{"date-parts":[[2019,6]]},"DOI":"10.1016\/j.jcp.2019.03.003","type":"journal-article","created":{"date-parts":[[2019,3,13]],"date-time":"2019-03-13T15:56:46Z","timestamp":1552492606000},"page":"522-538","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Anomaly detection in scientific data using joint statistical moments"],"prefix":"10.1016","volume":"387","author":[{"given":"Konduri","family":"Aditya","sequence":"first","affiliation":[]},{"given":"Hemanth","family":"Kolla","sequence":"additional","affiliation":[]},{"given":"W. Philip","family":"Kegelmeyer","sequence":"additional","affiliation":[]},{"given":"Timothy M.","family":"Shead","sequence":"additional","affiliation":[]},{"given":"Julia","family":"Ling","sequence":"additional","affiliation":[]},{"suffix":"IV","given":"Warren L.","family":"Davis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jcp.2019.03.003_br0010","doi-asserted-by":"crossref","first-page":"15:1","DOI":"10.1145\/1541880.1541882","article-title":"Anomaly detection: a survey","volume":"41","author":"Chandola","year":"2009","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.jcp.2019.03.003_br0020","series-title":"Mathematics for Analysis of Petascale Data","author":"Kegelmeyer","year":"2008"},{"key":"10.1016\/j.jcp.2019.03.003_br0030","doi-asserted-by":"crossref","unstructured":"J. Ling, W.P. Kegelmeyer, K. Aditya, H. Kolla, K.A. Reed, T.M. Shead, W.L. Davis, Using feature importance metrics to detect events of interest in scientific computing applications, in: 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), IEEE, pp. 55\u201363.","DOI":"10.1109\/LDAV.2017.8231851"},{"key":"10.1016\/j.jcp.2019.03.003_br0040","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1007\/s00180-015-0637-z","article-title":"Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights","volume":"31","author":"P\u00e9bay","year":"2016","journal-title":"Comput. Stat."},{"key":"10.1016\/j.jcp.2019.03.003_br0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/00401706.1969.10490657","article-title":"Procedures for detecting outlying observations in samples","volume":"11","author":"Grubbs","year":"1969","journal-title":"Technometrics"},{"key":"10.1016\/j.jcp.2019.03.003_br0060","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1007\/s10618-015-0444-8","article-title":"On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study","volume":"30","author":"Campos","year":"2016","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.jcp.2019.03.003_br0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0152173","article-title":"A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data","volume":"11","author":"Goldstein","year":"2016","journal-title":"PLoS ONE"},{"key":"10.1016\/j.jcp.2019.03.003_br0080","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/00031305.2014.917055","article-title":"Kurtosis as Peakedness, 1905\u20132014, R.I.P.","volume":"68","author":"Westfall","year":"2014","journal-title":"Am. Stat."},{"key":"10.1016\/j.jcp.2019.03.003_br0090","series-title":"Moment Component Analysis: An Illustration with International Stock Markets","author":"Jondeau","year":"2015"},{"key":"10.1016\/j.jcp.2019.03.003_br0100","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/07070111X","article-title":"Tensor decompositions and applications","volume":"51","author":"Kolda","year":"2009","journal-title":"SIAM Rev."},{"key":"10.1016\/j.jcp.2019.03.003_br0110","doi-asserted-by":"crossref","first-page":"1254","DOI":"10.1137\/060661569","article-title":"Symmetric tensors and symmetric tensor rank","volume":"30","author":"Comon","year":"2008","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10.1016\/j.jcp.2019.03.003_br0120","series-title":"Symmetric Orthogonal Tensor Decomposition is Trivial","author":"Kolda","year":"2015"},{"key":"10.1016\/j.jcp.2019.03.003_br0130","first-page":"2773","article-title":"Tensor decompositions for learning latent variable models","volume":"15","author":"Anandkumar","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.jcp.2019.03.003_br0140","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1137\/S0895479896305696","article-title":"A multilinear singular value decomposition","volume":"21","author":"Lathauwer","year":"2000","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10.1016\/j.jcp.2019.03.003_br0150","doi-asserted-by":"crossref","first-page":"2262","DOI":"10.1109\/78.950782","article-title":"Independent component analysis and (simultaneous) third-order tensor diagonalization","volume":"49","author":"Lathauwer","year":"2001","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.jcp.2019.03.003_br0160","series-title":"Mathematics and Signal Processing V","first-page":"1","article-title":"Tensor decompositions","author":"Comon","year":"2002"},{"key":"10.1016\/j.jcp.2019.03.003_br0170","unstructured":"B.W. Bader, T.G. Kolda, et al., Matlab tensor toolbox version 2.6, 2015, Available online."},{"key":"10.1016\/j.jcp.2019.03.003_br0180","doi-asserted-by":"crossref","first-page":"2727","DOI":"10.1016\/j.proci.2008.08.008","article-title":"Advanced compression-ignition engines\u2014understanding the in-cylinder processes","volume":"32","author":"Dec","year":"2009","journal-title":"Proc. Combust. Inst."},{"key":"10.1016\/j.jcp.2019.03.003_br0190","doi-asserted-by":"crossref","DOI":"10.1115\/1.2836613","article-title":"The reheat concept: the proven pathway to ultra-low emissions and high efficiency and flexibility","volume":"131","author":"G\u00fcthe","year":"2009","journal-title":"J. Eng. Gas Turbines Power"},{"key":"10.1016\/j.jcp.2019.03.003_br0200","doi-asserted-by":"crossref","first-page":"2635","DOI":"10.1016\/j.proci.2018.06.084","article-title":"Direct numerical simulation of flame stabilization assisted by autoignition in a reheat gas turbine combustor","volume":"37","author":"Aditya","year":"2019","journal-title":"Proc. Combust. Inst."},{"key":"10.1016\/j.jcp.2019.03.003_br0210","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1137\/15M1027942","article-title":"Trigger detection for adaptive scientific workflows using percentile sampling","volume":"38","author":"Bennett","year":"2016","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.jcp.2019.03.003_br0220","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1017\/S002211201000039X","article-title":"Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis","volume":"652","author":"Lu","year":"2010","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.jcp.2019.03.003_br0230","doi-asserted-by":"crossref","DOI":"10.1088\/1749-4699\/2\/1\/015001","article-title":"Terascale direct numerical simulations of turbulent combustion using s3d","volume":"2","author":"Chen","year":"2009","journal-title":"Comput. Sci. Discov."},{"key":"10.1016\/j.jcp.2019.03.003_br0240","doi-asserted-by":"crossref","first-page":"1633","DOI":"10.1016\/j.proci.2006.08.079","article-title":"Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co\/h 2 kinetics","volume":"31","author":"Hawkes","year":"2007","journal-title":"Proc. Combust. Inst."},{"key":"10.1016\/j.jcp.2019.03.003_br0250","doi-asserted-by":"crossref","first-page":"1826","DOI":"10.1016\/j.combustflame.2013.12.027","article-title":"Direct numerical simulations of hcci\/saci with ethanol","volume":"161","author":"Bhagatwala","year":"2014","journal-title":"Combust. Flame"},{"key":"10.1016\/j.jcp.2019.03.003_br0260","series-title":"ACM Sigmod Record, vol. 29","first-page":"93","article-title":"Lof: identifying density-based local outliers","author":"Breunig","year":"2000"},{"key":"10.1016\/j.jcp.2019.03.003_br0270","first-page":"2825","article-title":"Scikit-learn: machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."}],"container-title":["Journal of Computational Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002199911930172X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002199911930172X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,11]],"date-time":"2021-04-11T06:02:53Z","timestamp":1618120973000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002199911930172X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6]]},"references-count":27,"alternative-id":["S002199911930172X"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.jcp.2019.03.003","relation":{},"ISSN":["0021-9991"],"issn-type":[{"value":"0021-9991","type":"print"}],"subject":[],"published":{"date-parts":[[2019,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Anomaly detection in scientific data using joint statistical moments","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational Physics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jcp.2019.03.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}