{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T00:21:01Z","timestamp":1723162861592},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.ins.2024.121157","type":"journal-article","created":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T02:35:53Z","timestamp":1720233353000},"page":"121157","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Multi-feature hybrid network for traffic flow prediction based on mobility patterns"],"prefix":"10.1016","volume":"681","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6485-6041","authenticated-orcid":false,"given":"Xuesong","family":"Wu","sequence":"first","affiliation":[]},{"given":"Tianlu","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Linlin","family":"You","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9398-2327","authenticated-orcid":false,"given":"Zhaocheng","family":"He","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.ins.2024.121157_b0005","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/0041-1647(76)90059-9","article-title":"Estimation of parameters in models for traffic prediction: A non-linear regression approach","volume":"10","author":"H\u00f6gberg","year":"1976","journal-title":"Transp. Res."},{"key":"10.1016\/j.ins.2024.121157_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.107534","article-title":"Traffic congestion monitoring using an improved kNN strategy","volume":"156","author":"Harrou","year":"2020","journal-title":"Measurement: Journal of the International Measurement Confederation"},{"key":"10.1016\/j.ins.2024.121157_b0015","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1016\/j.sbspro.2013.08.076","article-title":"An improved K-nearest neighbor model for short-term traffic flow prediction","volume":"96","author":"Zhang","year":"2013","journal-title":"Procedia. Soc. Behav. Sci."},{"issue":"6","key":"10.1016\/j.ins.2024.121157_b0020","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1061\/(ASCE)0733-947X(2003)129:6(664)","article-title":"Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results","volume":"129","author":"Williams","year":"2003","journal-title":"J. Transp. Eng."},{"issue":"3","key":"10.1016\/j.ins.2024.121157_b0025","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.100.032410","article-title":"Classification of diffusion modes in single-particle tracking data: feature-based versus deep-learning approach","volume":"100","author":"Kowalek","year":"2019","journal-title":"Phys. Rev. E"},{"issue":"7","key":"10.1016\/j.ins.2024.121157_b0030","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TKDE.2017.2718525","article-title":"Road traffic speed prediction: a probabilistic model fusing multi-source data","volume":"30","author":"Lin","year":"2018","journal-title":"IEEE Trans. Knowl. Data Eng."},{"article-title":"Gaussian process behaviour in wide deep neural networks","year":"2018","series-title":"In: 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings","author":"De Matthews","key":"10.1016\/j.ins.2024.121157_b0035"},{"journal-title":"Adv. Neural Inf. Proces. Syst.","article-title":"High-dimensional multivariate forecasting with low-rank Gaussian copula processes","year":"2019","author":"Salinas","key":"10.1016\/j.ins.2024.121157_b0040"},{"issue":"8","key":"10.1016\/j.ins.2024.121157_b0045","doi-asserted-by":"crossref","first-page":"2123","DOI":"10.1109\/TITS.2015.2513411","article-title":"Short-term traffic prediction based on dynamic tensor completion","volume":"17","author":"Tan","year":"2016","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"8","key":"10.1016\/j.ins.2024.121157_b0050","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"article-title":"Learning phrase representations using RNN encoder-decoder for statistical machine translation","year":"2014","series-title":"In: EMNLP 2014\u20132014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference","author":"Cho","key":"10.1016\/j.ins.2024.121157_b0055"},{"key":"10.1016\/j.ins.2024.121157_b0060","doi-asserted-by":"crossref","unstructured":"Z. Shao, Z. Zhang, W. Wei, F. Wang, Y. Xu, X. Cao, C.S. Jensen, Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting, in: Proceedings of the VLDB Endowment. (2022) pp. 2733\u20132746.","DOI":"10.14778\/3551793.3551827"},{"issue":"4","key":"10.1016\/j.ins.2024.121157_b0065","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v37i4.25556","article-title":"PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction","volume":"37","author":"Jiang","year":"2023","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"key":"10.1016\/j.ins.2024.121157_b0070","doi-asserted-by":"crossref","unstructured":"J. Ji, J. Wang, C. Huang, J. Wu, B. Xu, Z. Wu, J. Zhang, Y. Zheng, Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction, in: Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023. (2023) pp. 4356\u20134364.","DOI":"10.1609\/aaai.v37i4.25555"},{"journal-title":"ArXiv. \/abs\/2306.07019","article-title":"Dynamic Causal graph convolutional network for traffic prediction","year":"2023","author":"Lin","key":"10.1016\/j.ins.2024.121157_b0075"},{"key":"10.1016\/j.ins.2024.121157_b0080","doi-asserted-by":"crossref","unstructured":"H. Liu, Z. Dong, R. Jiang, J. Deng, J. Deng, Q. Chen, X. Song, STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting. (2023), arXiv:2308.10425.","DOI":"10.1145\/3583780.3615160"},{"issue":"7","key":"10.1016\/j.ins.2024.121157_b0085","doi-asserted-by":"crossref","DOI":"10.1109\/TITS.2021.3067024","article-title":"MS-net: multi-source spatio-temporal network for traffic flow prediction","volume":"23","author":"Fang","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.ins.2024.121157_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2022.07.008","article-title":"Multi-mode dynamic residual graph convolution network for traffic flow prediction","volume":"609","author":"Huang","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121157_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2020.102938","article-title":"From twitter to traffic predictor: next-day morning traffic prediction using social media data","volume":"124","author":"Yao","year":"2021","journal-title":"Transportation Research Part C: Emerging Technologies"},{"key":"10.1016\/j.ins.2024.121157_b0100","doi-asserted-by":"crossref","DOI":"10.1016\/j.treng.2020.100025","article-title":"A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources","volume":"2","author":"Taghipour","year":"2020","journal-title":"Transportation Engineering"},{"key":"10.1016\/j.ins.2024.121157_b0105","series-title":"In: IEEE Conference on Intelligent Transportation Systems","first-page":"223","article-title":"A multi-level clustering approach for forecasting taxi travel demand","author":"Davis","year":"2016"},{"issue":"9","key":"10.1016\/j.ins.2024.121157_b0110","doi-asserted-by":"crossref","first-page":"5672","DOI":"10.1109\/TITS.2020.2988801","article-title":"Estimating traffic flow in large road networks based on multi-source traffic data","volume":"22","author":"Wang","year":"2021","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"8","key":"10.1016\/j.ins.2024.121157_b0115","doi-asserted-by":"crossref","DOI":"10.1109\/TITS.2023.3266371","article-title":"Deep learning for metro short-term origin-destination passenger flow forecasting considering section capacity utilization ratio","volume":"24","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"10.1016\/j.ins.2024.121157_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0169-7439(99)00047-7","article-title":"The mahalanobis distance","volume":"50","author":"De Maesschalck","year":"2000","journal-title":"Chemom. Intel. Lab. Syst."},{"key":"10.1016\/j.ins.2024.121157_b0125","first-page":"1907","article-title":"Graph wavenet for deep spatial-temporal graph modeling","author":"Wu","year":"2019","journal-title":"IJCAI International Joint Conference on Artificial Intelligence."},{"key":"10.1016\/j.ins.2024.121157_b0130","unstructured":"A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu, WaveNet: a generative model for raw audio based on PixelCNN Architecture. arXiv preprint arXiv:1609.03499, 2016."},{"key":"10.1016\/j.ins.2024.121157_b0135","doi-asserted-by":"crossref","unstructured":"R. Jiang, Z. Wang, J. Yong, P. Jeph, Q. Chen, Y. Kobayashi, X. Song, S. Fukushima, T. Suzumura, Spatio-Temporal Meta-Graph Learning for Traffic Forecasting, in: Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023. (2023) pp. 8078\u20138086.","DOI":"10.1609\/aaai.v37i7.25976"},{"key":"10.1016\/j.ins.2024.121157_b0140","first-page":"22419","article-title":"Autoformer: decomposition transformers with auto-correlation for long-term series forecasting","author":"Wu","year":"2021","journal-title":"Adv. Neural Inf. Proces. Syst."},{"key":"10.1016\/j.ins.2024.121157_b0145","doi-asserted-by":"crossref","unstructured":"M.X. Hoang, Y. Zheng, A.K. Singh, FCCF: Forecasting citywide crowd flows based on big data, in: GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems. (2016) pp. 6:1-6:10.","DOI":"10.1145\/2996913.2996934"},{"issue":"3","key":"10.1016\/j.ins.2024.121157_b0150","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1109\/TKDE.2019.2891537","article-title":"Flow prediction in spatio-temporal networks based on multitask deep learning","volume":"32","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2024.121157_b0155","doi-asserted-by":"crossref","unstructured":"C. Zheng, X. Fan, C. Wang, J. Qi, GMAN: A graph multi-attention network for traffic prediction. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence 34 (01), (2020) 1234\u20131241.","DOI":"10.1609\/aaai.v34i01.5477"},{"key":"10.1016\/j.ins.2024.121157_b0160","series-title":"In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"753","article-title":"Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks","author":"Wu","year":"2020"},{"issue":"1","key":"10.1016\/j.ins.2024.121157_b0165","first-page":"1","article-title":"Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution","volume":"17","author":"Li","year":"2023","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"10.1016\/j.ins.2024.121157_b0170","unstructured":"D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524010715?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524010715?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T01:36:49Z","timestamp":1723081009000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524010715"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":34,"alternative-id":["S0020025524010715"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.ins.2024.121157","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-feature hybrid network for traffic flow prediction based on mobility patterns","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121157","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121157"}}