{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:33:14Z","timestamp":1720114394880},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100006162","name":"FACEPE","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100006162","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"CNPq","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.ins.2017.04.040","type":"journal-article","created":{"date-parts":[[2017,4,24]],"date-time":"2017-04-24T17:01:02Z","timestamp":1493053262000},"page":"248-268","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Fuzzy clustering of distributional data with automatic weighting of variable components"],"prefix":"10.1016","volume":"406-407","author":[{"given":"Antonio","family":"Irpino","sequence":"first","affiliation":[]},{"given":"Rosanna","family":"Verde","sequence":"additional","affiliation":[]},{"given":"Francisco de A.T.","family":"de Carvalho","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2017.04.040_bib0001","doi-asserted-by":"crossref","article-title":"Pattern Recognition with Fuzzy Objective Function Algorithms","author":"Bezdek","year":"1981","DOI":"10.1007\/978-1-4757-0450-1"},{"key":"10.1016\/j.ins.2017.04.040_bib0002","article-title":"Fuzzy Models and Algorithms for Pattern Recognition and Image Processing","volume":"vol. 4","author":"Bezdek","year":"1999"},{"key":"10.1016\/j.ins.2017.04.040_bib0003","series-title":"Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data","author":"Bock","year":"2000"},{"issue":"21","key":"10.1016\/j.ins.2017.04.040_bib0004","doi-asserted-by":"crossref","first-page":"2858","DOI":"10.1016\/j.fss.2006.07.006","article-title":"A fuzzy extension of the silhouette width criterion for cluster analysis","volume":"157","author":"Campello","year":"2006","journal-title":"Fuzzy Sets Syst."},{"issue":"6","key":"10.1016\/j.ins.2017.04.040_bib0005","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1016\/0167-8655(96)00026-8","article-title":"Validating fuzzy partitions obtained through c-shells clustering","volume":"17","author":"Dave","year":"1996","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.ins.2017.04.040_bib0006","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.patrec.2009.11.007","article-title":"Unsupervised pattern recognition models for mixed feature\u2013type symbolic data","volume":"31","author":"De Carvalho","year":"2010","journal-title":"Pattern. Recognit. Lett."},{"issue":"7","key":"10.1016\/j.ins.2017.04.040_bib0007","doi-asserted-by":"crossref","first-page":"1223","DOI":"10.1016\/j.patcog.2008.11.016","article-title":"Partitional clustering algorithms for symbolic interval data based on single adaptive distances","volume":"42","author":"De Carvalho","year":"2009","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.ins.2017.04.040_bib0008","doi-asserted-by":"crossref","first-page":"1295","DOI":"10.1109\/TSMCA.2009.2030167","article-title":"Dynamic clustering of interval-valued data based on adaptive quadratic distances","volume":"39","author":"De Carvalho","year":"2009","journal-title":"Trans. Sys. Man Cyber. Part A"},{"issue":"21","key":"10.1016\/j.ins.2017.04.040_bib0009","doi-asserted-by":"crossref","first-page":"2833","DOI":"10.1016\/j.fss.2006.06.004","article-title":"Partitional fuzzy clustering methods based on adaptive quadratic distances","volume":"157","author":"De Carvalho","year":"2006","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2017.04.040_bib0010","series-title":"Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on","first-page":"1","article-title":"Fuzzy clustering of distribution-valued data using an adaptive L2 Wasserstein distance","author":"De Carvalho","year":"2015"},{"issue":"4","key":"10.1016\/j.ins.2017.04.040_bib0011","first-page":"329","article-title":"Classification automatique avec distances adaptatives","volume":"11","author":"Diday","year":"1977","journal-title":"R.A.I.R.O. Inf. Comput. Sci."},{"key":"10.1016\/j.ins.2017.04.040_bib0012","series-title":"Digital Pattern Classification","first-page":"47","article-title":"Clustering analysis","author":"Diday","year":"1976"},{"issue":"3","key":"10.1016\/j.ins.2017.04.040_bib0013","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.patcog.2003.08.002","article-title":"Unsupervised learning of prototypes and attribute weights","volume":"37","author":"Frigui","year":"2004","journal-title":"Pattern Recognit."},{"issue":"11","key":"10.1016\/j.ins.2017.04.040_bib0014","doi-asserted-by":"crossref","first-page":"3053","DOI":"10.1016\/j.patcog.2007.02.019","article-title":"Clustering and aggregation of relational data with applications to image database categorization","volume":"40","author":"Frigui","year":"2007","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.ins.2017.04.040_bib0015","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1111\/j.1751-5823.2002.tb00178.x","article-title":"On choosing and bounding probability metrics","volume":"70","author":"Gibbs","year":"2002","journal-title":"Int. Stat. Rev."},{"key":"10.1016\/j.ins.2017.04.040_bib0016","series-title":"Statistical Modelling with Quantile Functions","author":"Gilchrist","year":"2000"},{"issue":"2","key":"10.1016\/j.ins.2017.04.040_bib0017","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1307\/mmj\/1029003026","article-title":"A class of wasserstein metrics for probability distributions.","volume":"31","author":"Givens","year":"1984","journal-title":"Michigan Math. J."},{"key":"10.1016\/j.ins.2017.04.040_bib0018","doi-asserted-by":"crossref","unstructured":"A. Hardy, P. Lallemand, Clustering of Symbolic Objects Described by Multi-Valued and Modal Variables, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 325\u2013332.","DOI":"10.1007\/978-3-642-17103-1_31"},{"issue":"5","key":"10.1016\/j.ins.2017.04.040_bib0019","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1109\/TPAMI.2005.95","article-title":"Automated variable weighting in k-means type clustering","volume":"27","author":"Huang","year":"2005","journal-title":"Pattern Anal. Mach. Intell. IEEE Trans."},{"key":"10.1016\/j.ins.2017.04.040_bib0020","series-title":"Willamette River Basin: Trajectories of Environmental and Ecological Change","author":"Hulse","year":"2002"},{"key":"10.1016\/j.ins.2017.04.040_bib0021","first-page":"99","article-title":"Optimal histogram representation of large data sets: fisher vs piecewise linear approximation","volume":"RNTI-E-9","author":"Irpino","year":"2007","journal-title":"Revue des Nouvelles Technologies de l\u2019Information"},{"key":"10.1016\/j.ins.2017.04.040_bib0022","series-title":"Data Science and Classification","first-page":"185","article-title":"A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data","author":"Irpino","year":"2006"},{"issue":"2","key":"10.1016\/j.ins.2017.04.040_bib0023","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1007\/s11634-014-0176-4","article-title":"Basic statistics for distributional symbolic variables: a new metric-based approach","volume":"9","author":"Irpino","year":"2015","journal-title":"Adv. Data Anal. Classif."},{"issue":"7","key":"10.1016\/j.ins.2017.04.040_bib0024","doi-asserted-by":"crossref","first-page":"3351","DOI":"10.1016\/j.eswa.2013.12.001","article-title":"Dynamic clustering of histogram data based on adaptive squared Wasserstein distances","volume":"41","author":"Irpino","year":"2014","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.ins.2017.04.040_bib0025","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.patrec.2003.10.004","article-title":"A novel initialization scheme for the fuzzy c-means algorithm for color clustering","volume":"25","author":"Kim","year":"2004","journal-title":"Pattern Recognit. Lett."},{"issue":"7","key":"10.1016\/j.ins.2017.04.040_bib0026","doi-asserted-by":"crossref","first-page":"2250","DOI":"10.1016\/j.csda.2011.01.011","article-title":"A polythetic clustering process and cluster validity indexes for histogram-valued objects","volume":"55","author":"Kim","year":"2011","journal-title":"Comput. Stat. Data Anal."},{"issue":"2","key":"10.1016\/j.ins.2017.04.040_bib0027","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1080\/03610926.2011.581785","article-title":"Dissimilarity measures for histogram-valued observations","volume":"42","author":"Kim","year":"2013","journal-title":"Commun. Stat."},{"key":"10.1016\/j.ins.2017.04.040_bib0028","doi-asserted-by":"crossref","unstructured":"S. Korenjak-\u010cerne, V. Batagelj, Clustering Large Datasets of Mixed Units, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 43\u201348.","DOI":"10.1007\/978-3-642-72253-0_6"},{"key":"10.1016\/j.ins.2017.04.040_bib0029","doi-asserted-by":"crossref","unstructured":"S. Korenjak-\u010cerne, V. Batagelj, Symbolic Data Analysis Approach to Clustering Large Datasets, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 319\u2013327.","DOI":"10.1007\/978-3-642-56181-8_35"},{"issue":"1","key":"10.1016\/j.ins.2017.04.040_bib0030","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1080\/00324728.2014.954597","article-title":"A weighted clustering of population pyramids for the world\u2019s countries, 1996, 2001, 2006","volume":"69","author":"Korenjak-\u010cerne","year":"2015","journal-title":"Popul. Stud."},{"issue":"1","key":"10.1016\/j.ins.2017.04.040_bib0031","first-page":"1","article-title":"Clustering of population pyramids using Mallows\u2019 L2 distance","volume":"8","author":"Ko\u0161melj","year":"2011","journal-title":"Metodoloski Zvezki"},{"key":"10.1016\/j.ins.2017.04.040_bib0032","series-title":"Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on","first-page":"1","article-title":"Fuzzy co-clustering with automated variable weighting","author":"Laclau","year":"2015"},{"issue":"5","key":"10.1016\/j.ins.2017.04.040_bib0033","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1016\/j.jmva.2006.11.013","article-title":"Comparing clusterings \u2212 an information based distance","volume":"98","author":"Meila","year":"2007","journal-title":"J. Multivar. Anal."},{"issue":"3","key":"10.1016\/j.ins.2017.04.040_bib0034","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1023\/A:1024016609528","article-title":"Feature weighting in k-means clustering","volume":"52","author":"Modha","year":"2003","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2017.04.040_bib0035","series-title":"Encyclopedia of Mathematics","article-title":"Wasserstein metric","author":"R\u00fcshendorff","year":"2001"},{"key":"10.1016\/j.ins.2017.04.040_bib0036","series-title":"Proceedings of COMPSTAT 2010","first-page":"1653","article-title":"Non-hierarchical clustering for distribution-valued data","author":"Terada","year":"2010"},{"key":"10.1016\/j.ins.2017.04.040_sbref0034","series-title":"Proceedings of COMPSTAT 2008","first-page":"77","article-title":"Comparing histogram data using a Mahalanobis\u2014asserstein distance","author":"Verde","year":"2008"},{"key":"10.1016\/j.ins.2017.04.040_bib0038","series-title":"Selected Contributions in Data Analysis and Classification","first-page":"123","article-title":"Dynamic clustering of histogram data: using the right metric","author":"Verde","year":"2008"},{"key":"10.1016\/j.ins.2017.04.040_sbref0036","series-title":"Proceedings of COMPSTAT 2006","first-page":"869","article-title":"Dynamic clustering of histograms using Wasserstein metric","author":"Verde","year":"2006"},{"key":"10.1016\/j.ins.2017.04.040_bib0040","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1007\/s00180-011-0266-0","article-title":"Copula analysis of mixture models","volume":"27","author":"Vrac","year":"2012","journal-title":"Comput. Stat."},{"issue":"3","key":"10.1016\/j.ins.2017.04.040_bib0041","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/0734-189X(85)90055-6","article-title":"A distance metric for multidimensional histograms","volume":"32","author":"Werman","year":"1985","journal-title":"Comput. Vision Graph. Image Process."},{"issue":"8","key":"10.1016\/j.ins.2017.04.040_bib0042","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1109\/34.85677","article-title":"A validity measure for fuzzy clustering","volume":"13","author":"Xie","year":"1991","journal-title":"Pattern Anal. Mach. Intell. IEEE Trans."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025517306990?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025517306990?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,21]],"date-time":"2019-09-21T19:28:29Z","timestamp":1569094109000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025517306990"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":42,"alternative-id":["S0020025517306990"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.ins.2017.04.040","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fuzzy clustering of distributional data with automatic weighting of variable components","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2017.04.040","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}