{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T05:12:21Z","timestamp":1731647541193,"version":"3.28.0"},"reference-count":86,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.inffus.2024.102347","type":"journal-article","created":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T03:21:21Z","timestamp":1710300081000},"page":"102347","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Faster nonconvex low-rank matrix learning for image low-level and high-level vision: A unified framework"],"prefix":"10.1016","volume":"108","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2472-6637","authenticated-orcid":false,"given":"Hengmin","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Jian","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jianjun","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Ning","sequence":"additional","affiliation":[]},{"given":"Zhiyuan","family":"Zha","sequence":"additional","affiliation":[]},{"given":"Bihan","family":"Wen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.inffus.2024.102347_b1","doi-asserted-by":"crossref","first-page":"2672","DOI":"10.1109\/TNNLS.2018.2885616","article-title":"Learning a low tensor-train rank representation for hyperspectral image super-resolution","volume":"30","author":"Dian","year":"2019","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.inffus.2024.102347_b2","doi-asserted-by":"crossref","first-page":"5135","DOI":"10.1109\/TIP.2019.2916734","article-title":"Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization","volume":"28","author":"Dian","year":"2019","journal-title":"IEEE Trans. Image. Process."},{"key":"10.1016\/j.inffus.2024.102347_b3","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.inffus.2022.03.005","article-title":"Double-cohesion learning based multiview and discriminant palmprint recognition","volume":"83","author":"Zhao","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2024.102347_b4","first-page":"1","article-title":"Weighted sparse coding regularized nonconvex matrix regression for robust face recognition","volume":"394\u2013395","author":"Zhang","year":"2017","journal-title":"Inform. Sci."},{"key":"10.1016\/j.inffus.2024.102347_b5","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.inffus.2018.11.012","article-title":"Multispectral and hyperspectral image fusion with spatial-spectral sparse representation","volume":"49","author":"Dian","year":"2019","journal-title":"Inf. Fusion"},{"issue":"10","key":"10.1016\/j.inffus.2024.102347_b6","doi-asserted-by":"crossref","first-page":"12650","DOI":"10.1109\/TPAMI.2023.3279050","article-title":"Zero-shot hyperspectral sharpening","volume":"45","author":"Dian","year":"2023","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"2\u20133","key":"10.1016\/j.inffus.2024.102347_b7","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1007\/s11263-014-0761-1","article-title":"Structured overcomplete sparsifying transform learning with convergence guarantees and applications","volume":"114","author":"Wen","year":"2015","journal-title":"Inter. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2024.102347_b8","doi-asserted-by":"crossref","first-page":"1496","DOI":"10.1109\/TIFS.2023.3337717","article-title":"Efficient image classification via structured low-rank matrix factorization regression","volume":"19","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Inf. Forensics Security"},{"key":"10.1016\/j.inffus.2024.102347_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cosrev.2016.11.001","article-title":"Decomposition into low-rank plus additive matrices for background\/foreground separation: A review for a comparative evaluation with a large-scale dataset","volume":"23","author":"Bouwmans","year":"2017","journal-title":"Comput. Sci. Rev."},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b10","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.inffus.2012.01.008","article-title":"Simultaneous image fusion and super-resolution using sparse representation","volume":"14","author":"Yin","year":"2013","journal-title":"Inf. Fusion"},{"issue":"1","key":"10.1016\/j.inffus.2024.102347_b11","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2012","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102347_b12","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.inffus.2015.01.001","article-title":"Robust multi-modal medical image fusion via anisotropic heat diffusion guided low-rank structural analysis","volume":"26","author":"Wang","year":"2015","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2024.102347_b13","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.inffus.2017.05.006","article-title":"Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review","volume":"40","author":"Zhang","year":"2018","journal-title":"Inf. Fusion"},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b14","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1109\/TPAMI.2017.2677440","article-title":"Fast randomized singular value thresholding for low-rank optimization","volume":"40","author":"Oh","year":"2017","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102347_b15","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.neucom.2016.12.095","article-title":"Nonconvex relaxation based matrix regression for face recognition with structural noise and mixed noise","volume":"269","author":"Zhang","year":"2017","journal-title":"NeuroComputing"},{"issue":"615\u2013640","key":"10.1016\/j.inffus.2024.102347_b16","first-page":"15","article-title":"An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems","volume":"6","author":"Toh","year":"2010","journal-title":"Pac. J. Optim."},{"key":"10.1016\/j.inffus.2024.102347_b17","doi-asserted-by":"crossref","unstructured":"C. Lu, C. Zhu, C. Xu, S. Yan, Z. Lin, Generalized singular value thresholding, in: Proc. Assoc. Adv. Artif. Intell., AAAI, 2015, pp. 1805\u20131811.","DOI":"10.1609\/aaai.v29i1.9464"},{"year":"2010","series-title":"The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices","author":"Lin","key":"10.1016\/j.inffus.2024.102347_b18"},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b19","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1109\/TPAMI.2008.79","article-title":"Robust face recognition via sparse representation","volume":"31","author":"Wright","year":"2009","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102347_b20","doi-asserted-by":"crossref","unstructured":"W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang, A generalized iterated shrinkage algorithm for nonconvex sparse coding, in: Proc. IEEE Conf. Comput. Vis. Pattern. Recogn, CVPR, 2013, pp. 217\u2013224.","DOI":"10.1109\/ICCV.2013.34"},{"issue":"5","key":"10.1016\/j.inffus.2024.102347_b21","doi-asserted-by":"crossref","first-page":"3276","DOI":"10.1109\/TCYB.2020.3010960","article-title":"Global convergence guarantees of (A)GIST for a family of nonconvex sparse learning problems","volume":"52","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.inffus.2024.102347_b22","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1109\/TPAMI.2016.2535218","article-title":"Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes","volume":"39","author":"Yang","year":"2017","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b23","doi-asserted-by":"crossref","first-page":"1553","DOI":"10.1109\/TCYB.2020.2991219","article-title":"Joint optimal transport with convex regularization for robust image classification","volume":"52","author":"Qian","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2024.102347_b24","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.inffus.2017.05.002","article-title":"Multimodal sparse and low-rank subspace clustering","volume":"39","author":"Abavisani","year":"2018","journal-title":"Inf. Fusion"},{"issue":"5","key":"10.1016\/j.inffus.2024.102347_b25","doi-asserted-by":"crossref","first-page":"1722","DOI":"10.1109\/TCYB.2018.2811764","article-title":"LRR for subspace segmentation via tractable Schatten-p norm minimization and factorization","volume":"49","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Cybern."},{"issue":"11","key":"10.1016\/j.inffus.2024.102347_b26","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: Algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.inffus.2024.102347_b27","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1109\/TCYB.2018.2883566","article-title":"\u21130-Motivated low-rank sparse subspace clustering","volume":"50","author":"Brbi\u0107","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2024.102347_b28","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.inffus.2014.09.004","article-title":"A general framework for image fusion based on multi-scale transform and sparse representation","volume":"24","author":"Liu","year":"2015","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2024.102347_b29","doi-asserted-by":"crossref","unstructured":"L. Zhang, M. Yang, X. Feng, Sparse representation or collaborative representation: Which helps face recognition?, in: Proc. IEEE Conf. Comput. Vis., ICCV, 2012, pp. 471\u2013478.","DOI":"10.1109\/ICCV.2011.6126277"},{"key":"10.1016\/j.inffus.2024.102347_b30","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.patcog.2016.02.005","article-title":"Adaptive noise dictionary construction via IRRPCA for face recognition","volume":"59","author":"Chen","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2024.102347_b31","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.ins.2015.12.038","article-title":"Robust subspace segmentation via nonconvex low rank representation","volume":"340","author":"Jiang","year":"2016","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b32","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TCSVT.2023.3291821","article-title":"Linear regression problem relaxations solved by nonconvex ADMM with convergence analysis","volume":"34","author":"Zhang","year":"2024","journal-title":"IEEE Trans. Circ. Syst. Vid."},{"key":"10.1016\/j.inffus.2024.102347_b33","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.inffus.2020.08.020","article-title":"Asymmetric Gaussian process multi-view learning for visual classification","volume":"65","author":"Li","year":"2021","journal-title":"Inf. Fusion"},{"issue":"1","key":"10.1016\/j.inffus.2024.102347_b34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Found. Trends. Mach. Learn."},{"issue":"9","key":"10.1016\/j.inffus.2024.102347_b35","doi-asserted-by":"crossref","first-page":"5342","DOI":"10.1109\/TNNLS.2022.3183970","article-title":"Generalized nonconvex nonsmooth low-rank matrix recovery framework with feasible algorithm designs and convergence analysis","volume":"34","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2024.102347_b36","unstructured":"Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low-rank representation, in: Proc. Adv. Neural. Inf. Process. Syst, NIPS, 2011, pp. 612\u2013620."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b37","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1214\/09-AOS729","article-title":"Nearly unbiased variable selection under minimax concave penalty","volume":"38","author":"Zhang","year":"2010","journal-title":"Ann. Statist."},{"issue":"456","key":"10.1016\/j.inffus.2024.102347_b38","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1198\/016214501753382273","article-title":"Variable selection via nonconcave penalized likelihood and its oracle properties","volume":"96","author":"Fan","year":"2001","journal-title":"J. Amer. Statist. Assoc."},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b39","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1007\/s10115-013-0713-z","article-title":"Joint schatten-p norm and \u2113p-norm robust matrix completion for missing value recovery","volume":"42","author":"Nie","year":"2015","journal-title":"Knowl. Infor. Syst."},{"issue":"9","key":"10.1016\/j.inffus.2024.102347_b40","doi-asserted-by":"crossref","first-page":"2066","DOI":"10.1109\/TPAMI.2017.2748590","article-title":"Bilinear factor matrix norm minimization for robust PCA: Algorithms and applications","volume":"40","author":"Shang","year":"2018","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.inffus.2024.102347_b41","doi-asserted-by":"crossref","first-page":"4324","DOI":"10.1109\/TIT.2013.2249572","article-title":"Low-rank matrix recovery from errors and erasures","volume":"59","author":"Chen","year":"2013","journal-title":"IEEE Trans. Infor. Theo."},{"issue":"9","key":"10.1016\/j.inffus.2024.102347_b42","doi-asserted-by":"crossref","first-page":"2168","DOI":"10.1109\/TNNLS.2016.2573644","article-title":"Robust image regression based on the extended matrix variate power exponential distribution of dependent noise","volume":"28","author":"Luo","year":"2017","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.inffus.2024.102347_b43","doi-asserted-by":"crossref","first-page":"2291","DOI":"10.1109\/TNNLS.2014.2377477","article-title":"Matrix variate distribution-induced sparse representation for robust image classification","volume":"26","author":"Chen","year":"2015","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"12","key":"10.1016\/j.inffus.2024.102347_b44","doi-asserted-by":"crossref","first-page":"7515","DOI":"10.1109\/TCSVT.2023.3275299","article-title":"Efficient and effective nonconvex low-rank subspace clustering via SVT-free operators","volume":"33","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Circ. Syst. Vid."},{"key":"10.1016\/j.inffus.2024.102347_b45","doi-asserted-by":"crossref","unstructured":"S. Zhang, H. Qian, X. Gong, An alternating proximal splitting method with global convergence for nonconvex structured sparsity optimization, in: Proc. Assoc. Adv. Artif. Intell, AAAI, 2016, pp. 2330\u20132336.","DOI":"10.1609\/aaai.v30i1.10253"},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b46","doi-asserted-by":"crossref","first-page":"3012","DOI":"10.1109\/TNNLS.2023.3327716","article-title":"Unified framework for faster clustering via joint Schatten p-norm factorization with optimal mean","volume":"35","author":"Zhang","year":"2024","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"9","key":"10.1016\/j.inffus.2024.102347_b47","doi-asserted-by":"crossref","first-page":"2825","DOI":"10.1109\/TNNLS.2018.2885699","article-title":"Scalable proximal Jacobian iteration method with global convergence analysis for nonconvex unconstrained composite optimizations","volume":"30","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b48","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1137\/070697835","article-title":"Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization","volume":"52","author":"Recht","year":"2010","journal-title":"SIAM. Rev."},{"key":"10.1016\/j.inffus.2024.102347_b49","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1007\/s11263-016-0904-7","article-title":"Convex low rank approximation","volume":"120","author":"Larsson","year":"2016","journal-title":"Inter. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2024.102347_b50","doi-asserted-by":"crossref","unstructured":"R. Cabral, F. De la Torre, J.P. Costeira, A. Bernardino, Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition, in: Proc. IEEE Intern. Conf. Comput. Vis., ICCV, 2013, pp. 2488\u20132495.","DOI":"10.1109\/ICCV.2013.309"},{"issue":"4","key":"10.1016\/j.inffus.2024.102347_b51","doi-asserted-by":"crossref","first-page":"744","DOI":"10.1109\/TPAMI.2015.2465956","article-title":"Partial sum minimization of singular values in robust PCA: Algorithm and applications","volume":"38","author":"Oh","year":"2016","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b52","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1007\/s11263-016-0930-5","article-title":"Weighted nuclear norm minimization and its applications to low level vision","volume":"121","author":"Gu","year":"2017","journal-title":"Inter. J. Comput. Vis."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b53","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1109\/TIP.2015.2511584","article-title":"Nonconvex nonsmooth low-rank minimization via iteratively reweighted nuclear norm","volume":"25","author":"Lu","year":"2016","journal-title":"IEEE Trans. Image. Process."},{"issue":"12","key":"10.1016\/j.inffus.2024.102347_b54","doi-asserted-by":"crossref","first-page":"2167","DOI":"10.1081\/STA-120017219","article-title":"A matrix variate generalization of the power exponential family of distributions","volume":"31","author":"S\u00e1nchez Manzano","year":"2002","journal-title":"Commun. Stat. Theor. M."},{"key":"10.1016\/j.inffus.2024.102347_b55","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108692","article-title":"General nonconvex total variation and low-rank regularizations: Model, algorithm and applications","volume":"130","author":"Sun","year":"2022","journal-title":"Pattern Recognit."},{"issue":"1\u20132","key":"10.1016\/j.inffus.2024.102347_b56","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10107-013-0701-9","article-title":"Proximal alternating linearized minimization for nonconvex and nonsmooth problems","volume":"146","author":"Bolte","year":"2014","journal-title":"Math. Program."},{"issue":"1\u20132","key":"10.1016\/j.inffus.2024.102347_b57","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1007\/s10107-014-0826-5","article-title":"The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent","volume":"155","author":"Chen","year":"2016","journal-title":"Math. Program."},{"key":"10.1016\/j.inffus.2024.102347_b58","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1007\/s11263-010-0357-3","article-title":"Operator splittings, bregman methods and frame shrinkage in image processing","volume":"92","author":"Setzer","year":"2011","journal-title":"Inter. J. Comput. Vis."},{"issue":"10","key":"10.1016\/j.inffus.2024.102347_b59","doi-asserted-by":"crossref","first-page":"2916","DOI":"10.1109\/TNNLS.2019.2900572","article-title":"Efficient recovery of low-rank matrix via double nonconvex nonsmooth rank minimization","volume":"30","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b60","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1214\/09-AOS729","article-title":"Nearly unbiased variable selection under minimax concave penalty","volume":"38","author":"Zhang","year":"2010","journal-title":"Ann. Stat."},{"issue":"12","key":"10.1016\/j.inffus.2024.102347_b61","doi-asserted-by":"crossref","first-page":"5632","DOI":"10.1109\/TIP.2017.2745200","article-title":"Convergence of proximal iteratively reweighted nuclear norm algorithm for image processing","volume":"26","author":"Sun","year":"2017","journal-title":"IEEE Trans. Image. Process."},{"issue":"1","key":"10.1016\/j.inffus.2024.102347_b62","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1109\/TPAMI.2017.2651816","article-title":"Robust matrix factorization by majorization minimization","volume":"40","author":"Lin","year":"2018","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b63","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1109\/TSP.2016.2601299","article-title":"Majorization-minimization algorithms in signal processing, communications, and machine learning","volume":"65","author":"Sun","year":"2017","journal-title":"IEEE Trans. Signal. Process."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b64","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1137\/140957639","article-title":"Incremental majorization-minimization optimization with application to large-scale machine learning","volume":"25","author":"Mairal","year":"2015","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.inffus.2024.102347_b65","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.neunet.2020.09.021","article-title":"Low rank regularization: A review","volume":"136","author":"Hu","year":"2021","journal-title":"Neural. Netw."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b66","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1137\/090771806","article-title":"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions","volume":"53","author":"Halko","year":"2011","journal-title":"SIAM. Rev."},{"year":"2011","series-title":"Some software packages for partial SVD computation","author":"Lin","key":"10.1016\/j.inffus.2024.102347_b67"},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b68","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1109\/TIP.2014.2380155","article-title":"Smoothed low-rank and sparse matrix recovery by iteratively reweighted least squares minimization","volume":"24","author":"Lu","year":"2015","journal-title":"IEEE Trans. Image. Process."},{"issue":"2","key":"10.1016\/j.inffus.2024.102347_b69","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1007\/s10589-019-00081-1","article-title":"Iteratively reweighted \u21131 algorithms with extrapolation","volume":"73","author":"Yu","year":"2019","journal-title":"Comput. Optim. Appl."},{"key":"10.1016\/j.inffus.2024.102347_b70","doi-asserted-by":"crossref","first-page":"4041","DOI":"10.1109\/TMM.2022.3171088","article-title":"Incorporating linear regression problems into an adaptive framework with feasible optimizations","volume":"25","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Multi."},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b71","doi-asserted-by":"crossref","first-page":"1262","DOI":"10.1109\/TCSVT.2021.3078327","article-title":"Fast universal low rank representation","volume":"32","author":"Shen","year":"2022","journal-title":"IEEE Trans. Circ. Syst. Vid."},{"issue":"1","key":"10.1016\/j.inffus.2024.102347_b72","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1109\/TCSVT.2021.3055625","article-title":"Low-rank tensor graph learning for multi-view subspace clustering","volume":"32","author":"Chen","year":"2022","journal-title":"IEEE Trans. Circ. Syst. Vid."},{"year":"2009","series-title":"Variational Analysis","author":"Rockafellar","key":"10.1016\/j.inffus.2024.102347_b73"},{"issue":"11","key":"10.1016\/j.inffus.2024.102347_b74","doi-asserted-by":"crossref","first-page":"2628","DOI":"10.1109\/TPAMI.2018.2858249","article-title":"Large-scale low-rank matrix learning with nonconvex regularizers","volume":"41","author":"Yao","year":"2019","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102347_b75","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/TSP.2019.2952057","article-title":"Robust matrix completion via maximum correntropy criterion and half-quadratic optimization","volume":"68","author":"He","year":"2020","journal-title":"IEEE Trans. Signal. Proc."},{"issue":"4","key":"10.1016\/j.inffus.2024.102347_b76","doi-asserted-by":"crossref","first-page":"1521","DOI":"10.1109\/TCSVT.2022.3214583","article-title":"Robust matrix completion based on factorization and truncated-quadratic loss function","volume":"33","author":"Wang","year":"2023","journal-title":"IEEE Trans. Circ. Syst. Vid."},{"issue":"1","key":"10.1016\/j.inffus.2024.102347_b77","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1109\/TCSVT.2018.2889727","article-title":"Adaptive locality preserving regression","volume":"30","author":"Wen","year":"2020","journal-title":"IEEE Trans. Circ. Syst. Vid."},{"issue":"8","key":"10.1016\/j.inffus.2024.102347_b78","first-page":"1561","article-title":"Maximum correntropy criterion for robust face recognition","volume":"33","author":"He","year":"2010","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102347_b79","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.neunet.2018.02.002","article-title":"Inter-class sparsity based discriminative least square regression","volume":"102","author":"Wen","year":"2018","journal-title":"Neural Netw."},{"issue":"9","key":"10.1016\/j.inffus.2024.102347_b80","doi-asserted-by":"crossref","first-page":"8976","DOI":"10.1109\/TCYB.2021.3061660","article-title":"Structured graph learning for scalable subspace clustering: From single view to multiview","volume":"52","author":"Kang","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2024.102347_b81","doi-asserted-by":"crossref","unstructured":"C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, S. Yan, Robust and efficient subspace segmentation via least squares regression, in: Proc. Europ. Conf. Comput. Vis., ECCV, 2012, pp. 347\u2013360.","DOI":"10.1007\/978-3-642-33786-4_26"},{"issue":"3","key":"10.1016\/j.inffus.2024.102347_b82","doi-asserted-by":"crossref","first-page":"1493","DOI":"10.1109\/TCYB.2019.2943691","article-title":"Scaled simplex representation for subspace clustering","volume":"51","author":"Xu","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2024.102347_b83","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2022.108568","article-title":"Weighted schatten p-norm minimization with logarithmic constraint for subspace clustering","volume":"198","author":"Shen","year":"2022","journal-title":"Signal. Process."},{"key":"10.1016\/j.inffus.2024.102347_b84","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1007\/s11263-018-1086-2","article-title":"On unifying multi-view self-representations for clustering by tensor multi-rank minimization","volume":"126","author":"Xie","year":"2018","journal-title":"Inter. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2024.102347_b85","doi-asserted-by":"crossref","first-page":"3137","DOI":"10.1109\/TMM.2020.3020695","article-title":"Latent representation learning model for multi-band images fusion via low-rank and sparse embedding","volume":"23","author":"Wang","year":"2021","journal-title":"IEEE Trans. Multi."},{"key":"10.1016\/j.inffus.2024.102347_b86","series-title":"Proc. IEEE Inter. Conf. Data Mining","first-page":"889","article-title":"Learning with inadequate and incorrect supervision","author":"Gong","year":"2017"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524001258?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524001258?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T05:58:23Z","timestamp":1731563903000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253524001258"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":86,"alternative-id":["S1566253524001258"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.inffus.2024.102347","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Faster nonconvex low-rank matrix learning for image low-level and high-level vision: A unified framework","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2024.102347","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102347"}}