iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.INFFUS.2024.102305
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,26]],"date-time":"2024-08-26T08:28:36Z","timestamp":1724660916129},"reference-count":117,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002766","name":"Beijing University of Posts and Telecommunications","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002766","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.inffus.2024.102305","type":"journal-article","created":{"date-parts":[[2024,2,16]],"date-time":"2024-02-16T12:29:19Z","timestamp":1708086559000},"page":"102305","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Deep learning-based low overlap point cloud registration for complex scenario: The review"],"prefix":"10.1016","volume":"107","author":[{"given":"Yuehua","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Jiguang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shibiao","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2024.102305_b1","doi-asserted-by":"crossref","unstructured":"W. Yuan, B. Eckart, K. Kim, et al., DeepGMR: Learning Latent Gaussian Mixture Models for Registration, in: Proceedings of the IEEE\/CVF Conference on European Conference on Computer Vision, 2020, pp. 733\u2013750.","DOI":"10.1007\/978-3-030-58558-7_43"},{"issue":"2","key":"10.1016\/j.inffus.2024.102305_b2","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1109\/TRO.2020.3033695","article-title":"Teaser: Fast and certifiable point cloud registration","volume":"37","author":"Yang","year":"2020","journal-title":"IEEE Trans. Robot."},{"key":"10.1016\/j.inffus.2024.102305_b3","doi-asserted-by":"crossref","unstructured":"H. Deng, T. Birdal, S. Ilic, 3D Local Features for Direct Pairwise Registration, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3244\u20133253.","DOI":"10.1109\/CVPR.2019.00336"},{"key":"10.1016\/j.inffus.2024.102305_b4","doi-asserted-by":"crossref","unstructured":"S. Ali, K. Kahraman, G. Reis, et al., RPSRNet: End-to-End Trainable Rigid Point Set Registration Network using Barnes-Hut 2D-Tree Representation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13100\u201313110.","DOI":"10.1109\/CVPR46437.2021.01290"},{"key":"10.1016\/j.inffus.2024.102305_b5","doi-asserted-by":"crossref","unstructured":"W. Lu, G. Wan, Y. Zhou, et al., DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019.","DOI":"10.1109\/ICCV.2019.00010"},{"key":"10.1016\/j.inffus.2024.102305_b6","doi-asserted-by":"crossref","unstructured":"S. Agostinho, A. O\u0161ep, A. Del Bue, et al., (Just) A Spoonful of Refinements Helps the Registration Error Go Down, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 6108\u20136117.","DOI":"10.1109\/ICCV48922.2021.00605"},{"key":"10.1016\/j.inffus.2024.102305_b7","doi-asserted-by":"crossref","unstructured":"Z. Gojcic, C. Zhou, J.D. Wegner, A. Wieser, The Perfect Match: 3D Point Cloud Matching with Smoothed Densities, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5545\u20135554.","DOI":"10.1109\/CVPR.2019.00569"},{"key":"10.1016\/j.inffus.2024.102305_b8","doi-asserted-by":"crossref","unstructured":"C. Choy, J. Park, V. Koltun, Fully Convolutional Geometric Features, in: Proceedings of the IEEE\/CVF Conference on International Conference on Computer Vision, 2019.","DOI":"10.1109\/ICCV.2019.00905"},{"key":"10.1016\/j.inffus.2024.102305_b9","series-title":"A comprehensive survey on point cloud registration","author":"Huang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b10","doi-asserted-by":"crossref","first-page":"2522","DOI":"10.1109\/TIP.2019.2959236","article-title":"Evaluating local geometric feature representations for 3D rigid data matching","volume":"29","author":"Yang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.inffus.2024.102305_b11","doi-asserted-by":"crossref","first-page":"1859","DOI":"10.1109\/TPAMI.2019.2960234","article-title":"A performance evaluation of correspondence grouping methods for 3D rigid data matching","volume":"43","author":"Yang","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102305_b12","series-title":"Target-less registration of point clouds: A review","author":"Pan","year":"2019"},{"issue":"3","key":"10.1016\/j.inffus.2024.102305_b13","first-page":"222","article-title":"Deep learning based point cloud registration: An overview","volume":"2","author":"Zhang","year":"2020","journal-title":"Virt. Real. Intell. Hardw."},{"key":"10.1016\/j.inffus.2024.102305_b14","first-page":"1","article-title":"A comprehensive performance evaluation of 3D transformation estimation techniques in point cloud registration","volume":"70","author":"Zhao","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.inffus.2024.102305_b15","doi-asserted-by":"crossref","unstructured":"H. Xu, N. Ye, G. Liu, et al., FINet: Dual Branches Feature Interaction for Partial-to-partial Point Cloud Registration, in: Proceedings of the AAAI Conference on Artificial Intelligence., Vol. 36, (3) 2022, pp. 2848\u20132856.","DOI":"10.1609\/aaai.v36i3.20189"},{"key":"10.1016\/j.inffus.2024.102305_b16","doi-asserted-by":"crossref","first-page":"2230","DOI":"10.1109\/TMM.2021.3089838","article-title":"Broad-to-narrow registration and identification of 3D objects in partially scanned and cluttered point clouds","volume":"24","author":"Arvanitis","year":"2021","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2024.102305_b17","article-title":"PRNet: Self-supervised learning for partial-to-partial registration","volume":"vol. 32","author":"Wang","year":"2019"},{"key":"10.1016\/j.inffus.2024.102305_b18","series-title":"PCRNet: Point cloud registration network using pointnet encoding","author":"Sarode","year":"2019"},{"key":"10.1016\/j.inffus.2024.102305_b19","series-title":"Point cloud registration using representative overlapping points","author":"Zhu","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b20","doi-asserted-by":"crossref","unstructured":"Z. Zhang, J. Sun, Y. Dai, et al., End-to-end Learning the Partial Permutation Matrix for Robust 3D Point Cloud Registration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, (3) 2022, pp. 3399\u20133407.","DOI":"10.1609\/aaai.v36i3.20250"},{"key":"10.1016\/j.inffus.2024.102305_b21","doi-asserted-by":"crossref","unstructured":"J. Li, C. Zhang, Z. Xu, et al., Iterative distance-aware similarity matrix convolution with mutual-supervised point elimination for efficient point cloud registration, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 378\u2013394.","DOI":"10.1007\/978-3-030-58586-0_23"},{"key":"10.1016\/j.inffus.2024.102305_b22","doi-asserted-by":"crossref","unstructured":"Z. Yew, G. Lee, RPM-Net: Robust point matching using learned features, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11824\u201311833.","DOI":"10.1109\/CVPR42600.2020.01184"},{"key":"10.1016\/j.inffus.2024.102305_b23","doi-asserted-by":"crossref","unstructured":"S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, K. Schindler, Predator: Registration of 3d point clouds with low overlap, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4267\u20134276.","DOI":"10.1109\/CVPR46437.2021.00425"},{"key":"10.1016\/j.inffus.2024.102305_b24","doi-asserted-by":"crossref","unstructured":"X. Bai, Z. Luo, L. Zhou, H. Fu, L. Quan, C.-L. Tai, D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2020.","DOI":"10.1109\/CVPR42600.2020.00639"},{"key":"10.1016\/j.inffus.2024.102305_b25","first-page":"23872","article-title":"CoFiNet: Reliable coarse-to-fine correspondences for robust point cloud registration","volume":"34","author":"Yu","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102305_b26","series-title":"Neighborhood-aware geometric encoding network for point cloud registration","author":"Zhu","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b27","doi-asserted-by":"crossref","unstructured":"Z. Qin, H. Yu, C. Wang, et al., Geometric transformer for fast and robust point cloud registration, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11143\u201311152.","DOI":"10.1109\/CVPR52688.2022.01086"},{"key":"10.1016\/j.inffus.2024.102305_b28","doi-asserted-by":"crossref","unstructured":"Y. Li, T. Harada, Lepard: Learning partial point cloud matching in rigid and deformable scenes, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5554\u20135564.","DOI":"10.1109\/CVPR52688.2022.00547"},{"key":"10.1016\/j.inffus.2024.102305_b29","series-title":"IMFNet: Interpretable multimodal fusion for point cloud registration","author":"Huang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b30","series-title":"Proceedings of IEEE International Conference on Multimedia and Expo","first-page":"1","article-title":"Overlap-guided coarse-to-fine correspondence prediction for point cloud registration","author":"Mei","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b31","series-title":"COTReg: Coupled optimal transport based point cloud registration","author":"Mei","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b32","first-page":"1","article-title":"GLORN: Strong generalization fully convolutional network for low-overlap point cloud registration","volume":"60","author":"Xu","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102305_b33","series-title":"You only hypothesize once: point cloud registration with rotation-equivariant descriptors","author":"Wang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b34","series-title":"GGF: Global geometric feature for rotation invariant point cloud understanding","author":"Xiao","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b35","doi-asserted-by":"crossref","unstructured":"H. Chen, Z. Wei, Y. Xu, et al., ImLoveNet: Misaligned Image-supported Registration Network for Low-overlap Point Cloud Pairs, in: Proceedings of ACM SIGGRAPH 2022 Conference, 2022, pp. 1\u20139.","DOI":"10.1145\/3528233.3530744"},{"key":"10.1016\/j.inffus.2024.102305_b36","series-title":"UTOPIC: Uncertainty-aware overlap prediction network for partial point cloud registration","author":"Chen","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b37","doi-asserted-by":"crossref","unstructured":"H. Xu, S. Liu, G. Wang, et al., OMNet: Learning overlapping mask for partial-to-partial point cloud registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 3132\u20133141.","DOI":"10.1109\/ICCV48922.2021.00312"},{"key":"10.1016\/j.inffus.2024.102305_b38","doi-asserted-by":"crossref","unstructured":"Z. Yew, G. Lee, REGTR: End-to-end Point Cloud Correspondences with Transformers, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6677\u20136686.","DOI":"10.1109\/CVPR52688.2022.00656"},{"issue":"12","key":"10.1016\/j.inffus.2024.102305_b39","doi-asserted-by":"crossref","first-page":"4304","DOI":"10.1109\/TVCG.2021.3086113","article-title":"Consistent two-flow network for tele-registration of point clouds","volume":"28","author":"Yan","year":"2021","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.inffus.2024.102305_b40","unstructured":"C. Qi, H. Su, K. Mo, L. Guibas, PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, in: Conference on Computer Vision and Pattern Recognition, 2017."},{"issue":"5","key":"10.1016\/j.inffus.2024.102305_b41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3326362","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"Acm Trans. Graph. (TOG)"},{"key":"10.1016\/j.inffus.2024.102305_b42","doi-asserted-by":"crossref","unstructured":"H. Thomas, C. Qi, J. Deschaud, et al., Kpconv: Flexible and deformable convolution for point clouds, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 6411\u20136420.","DOI":"10.1109\/ICCV.2019.00651"},{"issue":"1","key":"10.1016\/j.inffus.2024.102305_b43","doi-asserted-by":"crossref","first-page":"61","DOI":"10.3390\/rs12010061","article-title":"Low overlapping point cloud registration using line features detection","volume":"12","author":"Prokop","year":"2019","journal-title":"Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2024.102305_b44","doi-asserted-by":"crossref","first-page":"2530","DOI":"10.1109\/TGRS.2019.2952086","article-title":"PLADE: A plane-based descriptor for point cloud registration with small overlap","volume":"58","author":"Chen","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102305_b45","doi-asserted-by":"crossref","unstructured":"Z. Chen, K. Sun, F. Yang, et al., SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13221\u201313231.","DOI":"10.1109\/CVPR52688.2022.01287"},{"key":"10.1016\/j.inffus.2024.102305_b46","doi-asserted-by":"crossref","unstructured":"C. Choy, W. Dong, V. Koltun, Deep Global Registration, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2514\u20132523.","DOI":"10.1109\/CVPR42600.2020.00259"},{"key":"10.1016\/j.inffus.2024.102305_b47","doi-asserted-by":"crossref","unstructured":"X. Bai, Z. Luo, L. Zhou, et al., PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15859\u201315869.","DOI":"10.1109\/CVPR46437.2021.01560"},{"key":"10.1016\/j.inffus.2024.102305_b48","doi-asserted-by":"crossref","unstructured":"J. Lee, S. Kim, M. Cho, et al., Deep Hough Voting for Robust Global Registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 15994\u201316003.","DOI":"10.1109\/ICCV48922.2021.01569"},{"key":"10.1016\/j.inffus.2024.102305_b49","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2022.3226498","article-title":"A new outlier removal strategy based on reliability of correspondence graph for fast point cloud registration","author":"Yan","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102305_b50","doi-asserted-by":"crossref","unstructured":"W. Chen, H. Li, Q. Nie, et al., Deterministic Point Cloud Registration via Novel Transformation Decomposition, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6348\u20136356.","DOI":"10.1109\/CVPR52688.2022.00624"},{"key":"10.1016\/j.inffus.2024.102305_b51","series-title":"Deep confidence guided distance for 3D partial shape registration","author":"Ginzburg","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b52","doi-asserted-by":"crossref","unstructured":"H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, O. Beijbom, NuScenes: A Multimodal Dataset for Autonomous Driving, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11621\u201311631.","DOI":"10.1109\/CVPR42600.2020.01164"},{"key":"10.1016\/j.inffus.2024.102305_b53","doi-asserted-by":"crossref","unstructured":"F. Lu, G. Chen, Y. Liu, et al., HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration, in: Proceedings of the IEEE\/CVF Conference on International Conference on Computer Vision, 2021, pp. 16014\u201316023.","DOI":"10.1109\/ICCV48922.2021.01571"},{"issue":"14","key":"10.1016\/j.inffus.2024.102305_b54","doi-asserted-by":"crossref","first-page":"1705","DOI":"10.1177\/0278364912458814","article-title":"Challenging data sets for point cloud registration algorithms","volume":"31","author":"Pomerleau","year":"2012","journal-title":"Int. J. Robot. Res. (IJRR)"},{"key":"10.1016\/j.inffus.2024.102305_b55","doi-asserted-by":"crossref","unstructured":"Z. Yew, G. Lee, 3DFeat-Net: Weakly supervised local 3d features for point cloud registration, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 607\u2013623.","DOI":"10.1007\/978-3-030-01267-0_37"},{"key":"10.1016\/j.inffus.2024.102305_b56","series-title":"Proceeding of International Conference on 3D Vision","first-page":"1351","article-title":"3D point cloud registration with multi-scale architecture and unsupervised transfer learning","author":"Horache","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b57","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2022.3175371","article-title":"Learning general and distinctive 3D local deep descriptors for point cloud registration","author":"Poiesi","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102305_b58","first-page":"1","article-title":"SAC-COT: Sample consensus by sampling compatibility triangles in graphs for 3-D point cloud registration","volume":"60","author":"Yang","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2024.102305_b59","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1177\/0278364916679498","article-title":"1 year, 1000 km: The Oxford RobotCar dataset","volume":"36","author":"Maddern","year":"2017","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.inffus.2024.102305_b60","doi-asserted-by":"crossref","unstructured":"J. Li, G. Lee, USIP: Unsupervised Stable Interest Point Detection from 3D Point Clouds, in: Proceedings of the IEEE\/CVF Conference on International Conference on Computer Vision, 2019, pp. 361\u2013370.","DOI":"10.1109\/ICCV.2019.00045"},{"key":"10.1016\/j.inffus.2024.102305_b61","doi-asserted-by":"crossref","unstructured":"A. Geiger, P. Lenz, R. Urtasun, Are We Ready for Autonomous Driving? the KITTI vision benchmark suite, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354\u20133361.","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"10.1016\/j.inffus.2024.102305_b62","first-page":"21297","article-title":"RSKDD-Net: Random sample-based keypoint detector and descriptor","volume":"33","author":"Lu","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102305_b63","doi-asserted-by":"crossref","unstructured":"A. Cao, G. Puy, A. Boulch, et al., PCAM: Product of cross-attention matrices for rigid registration of point clouds, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 13229\u201313238.","DOI":"10.1109\/ICCV48922.2021.01298"},{"key":"10.1016\/j.inffus.2024.102305_b64","doi-asserted-by":"crossref","unstructured":"Z. Chen, F. Yang, W. Tao, DetarNet: Decoupling translation and rotation by siamese network for point cloud registration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, (1) 2022, pp. 401\u2013409.","DOI":"10.1609\/aaai.v36i1.19917"},{"key":"10.1016\/j.inffus.2024.102305_b65","series-title":"3d meta-registration: Learning to learn registration of 3d point clouds","author":"Wang","year":"2020"},{"key":"10.1016\/j.inffus.2024.102305_b66","doi-asserted-by":"crossref","unstructured":"W. Liu, H. Wu, G. Chirikjian, LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 15293\u201315302.","DOI":"10.1109\/ICCV48922.2021.01501"},{"key":"10.1016\/j.inffus.2024.102305_b67","series-title":"Proceeding of International Conference on 3D Vision","first-page":"623","article-title":"Alignnet-3d: Fast point cloud registration of partially observed objects","author":"Gro\u00df","year":"2019"},{"key":"10.1016\/j.inffus.2024.102305_b68","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.isprsjprs.2021.03.003","article-title":"DDRNet: Fast point cloud registration network for large-scale scenes","volume":"175","author":"Zhang","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2024.102305_b69","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.1109\/LRA.2021.3137888","article-title":"Fast and robust registration of partially overlapping point clouds","volume":"7","author":"Arnold","year":"2021","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.inffus.2024.102305_b70","doi-asserted-by":"crossref","DOI":"10.1109\/TRO.2022.3150683","article-title":"LCDNet: Deep loop closure detection and point cloud registration for lidar slam","author":"Cattaneo","year":"2022","journal-title":"IEEE Transactions on Robotics"},{"key":"10.1016\/j.inffus.2024.102305_b71","article-title":"VRNet: Learning the rectified virtual corresponding points for 3D point cloud registration","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.inffus.2024.102305_b72","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108784","article-title":"Self-supervised rigid transformation equivariance for accurate 3D point cloud registration","volume":"130","author":"Zhang","year":"2022","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.inffus.2024.102305_b73","article-title":"Point cloud registration based on direct deep features with applications in intelligent vehicles","author":"Li","year":"2021","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2024.102305_b74","series-title":"DFC: Deep feature consistency for robust point cloud registration","author":"Xu","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b75","series-title":"Learning to register unbalanced point pairs","author":"Lee","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b76","series-title":"Reliable inlier evaluation for unsupervised point cloud registration","author":"Shen","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b77","series-title":"Cascading feature extraction for fast point cloud registration","author":"Hisadome","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b78","doi-asserted-by":"crossref","unstructured":"J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, J. Gall, SemanticKITTI: A dataset for semantic scene understanding of lidar sequences, in: Proceeding of the IEEE\/CVF Conference on International Conference on Computer Vision, 2019.","DOI":"10.1109\/ICCV.2019.00939"},{"key":"10.1016\/j.inffus.2024.102305_b79","series-title":"Fast semantic-assisted outlier removal for large-scale point cloud registration","author":"Truong","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b80","doi-asserted-by":"crossref","unstructured":"Z. Gojcic, O. Litany, A. Wieser, et al., Weakly supervised learning of rigid 3D scene flow, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 5692\u20135703.","DOI":"10.1109\/CVPR46437.2021.00564"},{"key":"10.1016\/j.inffus.2024.102305_b81","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.isprsjprs.2018.06.018","article-title":"Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor","volume":"144","author":"Dong","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102305_b82","series-title":"A large dataset of object scans","author":"Choi","year":"2016"},{"key":"10.1016\/j.inffus.2024.102305_b83","doi-asserted-by":"crossref","unstructured":"X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. Tenenbaum, W. Freeman, Pix3d: Dataset and methods for single-image 3D shape modeling, in: Proceedings of IEEE Conf. on Computer Vision and Pattern Recognition, 2018, pp. 2974\u20132983.","DOI":"10.1109\/CVPR.2018.00314"},{"key":"10.1016\/j.inffus.2024.102305_b84","doi-asserted-by":"crossref","unstructured":"A. Zeng, S. Song, M. Nie\u00dfner, M. Fisher, J. Xiao, T. Funkhouser, 3DMatch: Learning local geometric descriptors from RGB-D reconstructions, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2017, pp. 1802\u20131811.","DOI":"10.1109\/CVPR.2017.29"},{"key":"10.1016\/j.inffus.2024.102305_b85","series-title":"RIGA: Rotation-invariant and globally-aware descriptors for point cloud registration","author":"Yu","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b86","doi-asserted-by":"crossref","unstructured":"H. Deng, T. Birdal, S. Ilic, PPFnet: Global Context Aware Local Features for Robust 3D Point Matching, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 195\u2013205.","DOI":"10.1109\/CVPR.2018.00028"},{"key":"10.1016\/j.inffus.2024.102305_b87","doi-asserted-by":"crossref","unstructured":"Z. Gojcic, C. Zhou, J. Wegner, et al., Learning multiview 3d point cloud registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2020, pp. 1759\u20131769.","DOI":"10.1109\/CVPR42600.2020.00183"},{"key":"10.1016\/j.inffus.2024.102305_b88","doi-asserted-by":"crossref","first-page":"2710","DOI":"10.1109\/TIP.2022.3160609","article-title":"R-PointHop: A green, accurate, and unsupervised point cloud registration method","volume":"31","author":"Kadam","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2024.102305_b89","series-title":"Self-supervised point cloud registration with deep versatile descriptors","author":"Liu","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b90","doi-asserted-by":"crossref","unstructured":"L. Li, S. Zhu, H. Fu, et al., End-to-end learning local multi-view descriptors for 3d point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1919\u20131928.","DOI":"10.1109\/CVPR42600.2020.00199"},{"key":"10.1016\/j.inffus.2024.102305_b91","unstructured":"Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3DShapeNets: A deep representation for volumetric shapes, in: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2015, pp. 1912\u20131920."},{"key":"10.1016\/j.inffus.2024.102305_b92","doi-asserted-by":"crossref","unstructured":"Y. Wang, J. Solomon, Deep closest point: Learning representations for point cloud registration, in: Proceedings of the IEEE\/CVF Conference on International Conference on Computer Vision, 2019, pp. 3523\u20133532.","DOI":"10.1109\/ICCV.2019.00362"},{"key":"10.1016\/j.inffus.2024.102305_b93","series-title":"Coarse-to-fine point cloud registration with SE (3)-equivariant representations","author":"Lin","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b94","series-title":"Deep Weighted Consensus: Dense correspondence confidence maps for 3D shape registration","author":"Ginzburg","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b95","doi-asserted-by":"crossref","unstructured":"X. Huang, G. Mei, J. Zhang, Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11366\u201311374.","DOI":"10.1109\/CVPR42600.2020.01138"},{"key":"10.1016\/j.inffus.2024.102305_b96","doi-asserted-by":"crossref","unstructured":"D. Bauer, T. Patten, M. Vincze, Reagent: Point cloud registration using imitation and reinforcement learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14586\u201314594.","DOI":"10.1109\/CVPR46437.2021.01435"},{"key":"10.1016\/j.inffus.2024.102305_b97","doi-asserted-by":"crossref","unstructured":"K. Fu, S. Liu, X. Luo, et al., Robust point cloud registration framework based on deep graph matching, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 8893\u20138902.","DOI":"10.1109\/CVPR46437.2021.00878"},{"key":"10.1016\/j.inffus.2024.102305_b98","series-title":"Robust partial-to-partial point cloud registration in a full range","author":"Pan","year":"2021"},{"issue":"2","key":"10.1016\/j.inffus.2024.102305_b99","doi-asserted-by":"crossref","first-page":"1623","DOI":"10.1007\/s00521-021-06464-y","article-title":"Multi-features guidance network for partial-to-partial point cloud registration","volume":"34","author":"Wang","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.inffus.2024.102305_b100","series-title":"Full transformer framework for robust point cloud registration with deep information interaction","author":"Chen","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b101","doi-asserted-by":"crossref","unstructured":"W. Tang, D. Zou, Multi-instance Point Cloud Registration by Efficient Correspondence Clustering, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6667\u20136676.","DOI":"10.1109\/CVPR52688.2022.00655"},{"key":"10.1016\/j.inffus.2024.102305_b102","series-title":"RAR: Region-aware point cloud registration","author":"Hao","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b103","series-title":"Learning 3d-3d correspondences for one-shot partial-to-partial registration","author":"Dang","year":"2020"},{"key":"10.1016\/j.inffus.2024.102305_b104","series-title":"Proceeding of International Conference on 3D Vision","first-page":"603","article-title":"Correspondence matrices are underrated","author":"Zodage","year":"2020"},{"key":"10.1016\/j.inffus.2024.102305_b105","series-title":"One framework to register them all: pointnet encoding for point cloud alignment","author":"Sarode","year":"2019"},{"key":"10.1016\/j.inffus.2024.102305_b106","doi-asserted-by":"crossref","unstructured":"B. Wu, J. Ma, G. Chen, et al., Feature Interactive Representation for Point Cloud Registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 5530\u20135539.","DOI":"10.1109\/ICCV48922.2021.00548"},{"key":"10.1016\/j.inffus.2024.102305_b107","unstructured":"M. Zhu, M. Ghaffari, H. Peng, Correspondence-free point cloud registration with SO(3)-equivariant implicit shape representations, in: Conference on Robot Learning, 2022, pp. 1412\u20131422, PMLR."},{"issue":"4","key":"10.1016\/j.inffus.2024.102305_b108","doi-asserted-by":"crossref","first-page":"8221","DOI":"10.1109\/LRA.2021.3097275","article-title":"Keypoint matching for point cloud registration using multiplex dynamic graph attention networks","volume":"6","author":"Shi","year":"2021","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.inffus.2024.102305_b109","article-title":"Global-PBNet: A novel point cloud registration for autonomous driving","author":"Zheng","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2024.102305_b110","article-title":"STORM: Structure-based overlap matching for partial point cloud registration","author":"Wang","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102305_b111","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.patrec.2021.08.002","article-title":"SCANet: A spatial and channel attention based network for partial-to-partial point cloud registration","volume":"151","author":"Zhou","year":"2021","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.inffus.2024.102305_b112","series-title":"Planning with learned dynamic model for unsupervised point cloud registration","author":"Jiang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b113","first-page":"1","article-title":"A novel partial point cloud registration method based on graph attention network","author":"Song","year":"2022","journal-title":"The Visual Computer"},{"key":"10.1016\/j.inffus.2024.102305_b114","series-title":"Genreg: deep generative method for fast point cloud registration","author":"Huang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102305_b115","series-title":"PointCLM: A contrastive learning-based framework for multi-instance point cloud registration","author":"Yuan","year":"2022"},{"key":"10.1016\/j.inffus.2024.102305_b116","doi-asserted-by":"crossref","unstructured":"S. Ao, Q. Hu, B. Yang, A. Markham, Y. Guo, SpinNet: Learning a general surface descriptor for 3d point cloud registration, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11753\u201311762.","DOI":"10.1109\/CVPR46437.2021.01158"},{"key":"10.1016\/j.inffus.2024.102305_b117","doi-asserted-by":"crossref","unstructured":"Y. Aoki, H. Goforth, R. Srivatsan, et al., PointnetLK: Robust & efficient point cloud registration using PointNet, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 7163\u20137172.","DOI":"10.1109\/CVPR.2019.00733"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524000836?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524000836?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,23]],"date-time":"2024-03-23T07:30:49Z","timestamp":1711179049000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253524000836"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":117,"alternative-id":["S1566253524000836"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.inffus.2024.102305","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep learning-based low overlap point cloud registration for complex scenario: The review","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2024.102305","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102305"}}