{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T19:34:49Z","timestamp":1725824089464},"reference-count":71,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003196","name":"Ministero della Salute","doi-asserted-by":"publisher","award":["CUP: H53C22000650006"],"id":[{"id":"10.13039\/501100003196","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.inffus.2023.101923","type":"journal-article","created":{"date-parts":[[2023,7,14]],"date-time":"2023-07-14T21:30:04Z","timestamp":1689370204000},"page":"101923","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Data and model aggregation for radiomics applications: Emerging trend and open challenges"],"prefix":"10.1016","volume":"100","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3159-0536","authenticated-orcid":false,"given":"Antonella","family":"Guzzo","sequence":"first","affiliation":[]},{"given":"Giancarlo","family":"Fortino","sequence":"additional","affiliation":[]},{"given":"Gianluigi","family":"Greco","sequence":"additional","affiliation":[]},{"given":"Marcello","family":"Maggiolini","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.inffus.2023.101923_b1","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1148\/radiol.2015151169","article-title":"Radiomics: Images are more than pictures, they are data","volume":"278","author":"Gillies","year":"2016","journal-title":"Radiology"},{"issue":"10","key":"10.1016\/j.inffus.2023.101923_b2","doi-asserted-by":"crossref","first-page":"1296","DOI":"10.1007\/s11547-021-01389-x","article-title":"A deep look into radiomics","volume":"126","author":"Camilla","year":"2021","journal-title":"Radiol. Med."},{"issue":"4","key":"10.1016\/j.inffus.2023.101923_b3","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.ejca.2011.11.036","article-title":"Radiomics: Extracting more information from medical images using advanced feature analysis","volume":"48","author":"Lambin","year":"2012","journal-title":"Eur. J. Cancer"},{"key":"10.1016\/j.inffus.2023.101923_b4","article-title":"Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node metastasis prediction in breast cancer","author":"Li","year":"2022","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.inffus.2023.101923_b5","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.inffus.2020.09.006","article-title":"A survey on deep learning in medicine: Why, how and when?","volume":"66","author":"Piccialli","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101923_b6","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.future.2020.03.054","article-title":"IoMT-based computational approach for detecting brain tumor","volume":"109","author":"Khan","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"issue":"12","key":"10.1016\/j.inffus.2023.101923_b7","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1038\/nrclinonc.2017.141","article-title":"Radiomics: the bridge between medical imaging and personalized medicine","volume":"14","author":"Lambin","year":"2017","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"1","key":"10.1016\/j.inffus.2023.101923_b8","doi-asserted-by":"crossref","DOI":"10.3390\/diagnostics12010172","article-title":"Automated breast volume scanner (ABVS)-based radiomic nomogram: A potential tool for reducing unnecessary biopsies of BI-RADS 4 lesions","volume":"12","author":"Wang","year":"2022","journal-title":"Diagnostics"},{"issue":"337","key":"10.1016\/j.inffus.2023.101923_b9","article-title":"Bringing radiomics into a multi-omics framework for a comprehensive genotype\u2013phenotype characterization of oncological diseases","volume":"17","author":"Mario","year":"2019","journal-title":"J. Transl. Med."},{"key":"10.1016\/j.inffus.2023.101923_b10","series-title":"Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, March 30 - April 2, 2011, Chicago, Illinois, USA","first-page":"165","article-title":"Multi-modal data fusion schemes for integrated classification of imaging and non-imaging biomedical data","author":"Tiwari","year":"2011"},{"key":"10.1016\/j.inffus.2023.101923_b11","series-title":"Procedures for Performing Systematic Reviews, Vol. 33","first-page":"1","author":"Kitchenham","year":"2004"},{"key":"10.1016\/j.inffus.2023.101923_b12","unstructured":"http:\/\/www.itksnap.org\/pmwiki\/pmwiki.php?n=Main.Publications."},{"key":"10.1016\/j.inffus.2023.101923_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103165","article-title":"Region-to-boundary deep learning model with multi-scale feature fusion for medical image segmentation","volume":"71","author":"Liu","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"issue":"7","key":"10.1016\/j.inffus.2023.101923_b14","first-page":"3523","article-title":"Image segmentation using deep learning: A survey","volume":"44","author":"Minaee","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101923_b15","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.inffus.2023.101923_b16","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","first-page":"424","article-title":"3D U-Net: Learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.inffus.2023.101923_b17","doi-asserted-by":"crossref","unstructured":"F. Milletar\u00ec, N. Navab, S.-A. Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation, in: 2016 Fourth International Conference on 3D Vision (3DV), 2016, pp. 565\u2013571.","DOI":"10.1109\/3DV.2016.79"},{"key":"10.1016\/j.inffus.2023.101923_b18","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proc CVPR, 2016, pp. 770\u2013778,.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.inffus.2023.101923_b19","doi-asserted-by":"crossref","first-page":"88835","DOI":"10.1109\/ACCESS.2021.3089704","article-title":"R2U3D: Recurrent residual 3D U-Net for lung segmentation","volume":"9","author":"Kadia","year":"2021","journal-title":"IEEE Access"},{"issue":"20","key":"10.1016\/j.inffus.2023.101923_b20","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab440d","article-title":"Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network","volume":"64","author":"Guo","year":"2019","journal-title":"Phys. Med. Biol."},{"issue":"6","key":"10.1016\/j.inffus.2023.101923_b21","first-page":"1123","article-title":"Automated vessel segmentation in lung CT and CTA images via deep neural networks","volume":"29","author":"Tan","year":"2021","journal-title":"J. X-ray Sci. Technol."},{"issue":"3","key":"10.1016\/j.inffus.2023.101923_b22","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1145\/1015706.1015720","article-title":"\u201cGrabCut\u201d: Interactive foreground extraction using iterated graph cuts","volume":"23","author":"Rother","year":"2004","journal-title":"ACM Trans. Graph."},{"issue":"13","key":"10.1016\/j.inffus.2023.101923_b23","doi-asserted-by":"crossref","first-page":"R150","DOI":"10.1088\/0031-9155\/61\/13\/R150","article-title":"Applications and limitations of radiomics","volume":"61","author":"Yip","year":"2016","journal-title":"Phys. Med. Biol."},{"issue":"10","key":"10.1016\/j.inffus.2023.101923_b24","doi-asserted-by":"crossref","first-page":"1296","DOI":"10.1007\/s11547-021-01389-x","article-title":"A deep look into radiomics","volume":"126","author":"Scapicchio","year":"2021","journal-title":"Radiol. Med."},{"issue":"1","key":"10.1016\/j.inffus.2023.101923_b25","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1002\/med.21846","article-title":"A review in radiomics: Making personalized medicine a reality via routine imaging","volume":"42","author":"Guiot","year":"2022","journal-title":"Med. Res. Rev."},{"key":"10.1016\/j.inffus.2023.101923_b26","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.ejmp.2021.03.009","article-title":"Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization","volume":"83","author":"Papadimitroulas","year":"2021","journal-title":"Phys. Medica"},{"issue":"24","key":"10.1016\/j.inffus.2023.101923_b27","doi-asserted-by":"crossref","first-page":"24TR02","DOI":"10.1088\/1361-6560\/aba798","article-title":"Harmonization strategies for multicenter radiomics investigations","volume":"65","author":"Da-Ano","year":"2020","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.inffus.2023.101923_b28","article-title":"Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer","volume":"13","author":"M","year":"2023","journal-title":"Front. Oncol."},{"key":"10.1016\/j.inffus.2023.101923_b29","series-title":"Reliability of PET\/CT shape and heterogeneity features in functional and morphological components of non-small cell lung cancer tumors: a repeatability analysis in a prospective multi-center cohort","author":"Desseroit","year":"2016"},{"issue":"2","key":"10.1016\/j.inffus.2023.101923_b30","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.radonc.2011.10.014","article-title":"Combined PET\/CT image characteristics for radiotherapy tumor response in lung cancer","volume":"102","author":"Vaidya","year":"2012","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.inffus.2023.101923_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2019.108714","article-title":"Fusion radiomics features from conventional MRI predict MGMT promoter methylation status in lower grade gliomas","volume":"121","author":"Jiang","year":"2019","journal-title":"Eur. J. Radiol."},{"key":"10.1016\/j.inffus.2023.101923_b32","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.ins.2021.07.024","article-title":"BARF: A new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification","volume":"577","author":"Abdar","year":"2021","journal-title":"Inform. Sci."},{"issue":"8","key":"10.1016\/j.inffus.2023.101923_b33","doi-asserted-by":"crossref","first-page":"2268","DOI":"10.1109\/JBHI.2019.2956354","article-title":"Multi-level multi-modality fusion radiomics: Application to PET and CT imaging for prognostication of head and neck cancer","volume":"24","author":"Lv","year":"2020","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.inffus.2023.101923_b34","series-title":"Medical Imaging 2018: Computer-Aided Diagnosis, Houston, Texas, USA, 10-15 February 2018","first-page":"105753S","article-title":"Radiomic biomarkers from PET\/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients","volume":"vol. 10575","author":"Mu","year":"2018"},{"key":"10.1016\/j.inffus.2023.101923_b35","first-page":"31","article-title":"Quantification of local metabolic tumor volume changes by registering blended PET-CT images for prediction of pathologic tumor response","volume":"vol. 11076","author":"Riyahi","year":"2018"},{"key":"10.1016\/j.inffus.2023.101923_b36","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2018.01045","article-title":"Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to Alzheimer\u2019s disease","volume":"12","author":"Zhou","year":"2019","journal-title":"Front. Neurosci."},{"issue":"2","key":"10.1016\/j.inffus.2023.101923_b37","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1007\/s10549-020-05533-5","article-title":"Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging","volume":"180","author":"Parekh","year":"2020","journal-title":"Breast Cancer Res. Treat."},{"issue":"7","key":"10.1016\/j.inffus.2023.101923_b38","article-title":"PET\/MR fusion texture analysis for the clinical outcome prediction in soft-tissue sarcoma","volume":"22","author":"Zhao","year":"2022","journal-title":"Cancer Imaging"},{"key":"10.1016\/j.inffus.2023.101923_b39","series-title":"Medical Image Computing and Computer Assisted Intervention - MICCAI 2020 - 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part VII","first-page":"763","article-title":"Multi-modality information fusion for radiomics-based neural architecture search","volume":"vol. 12267","author":"Peng","year":"2020"},{"issue":"5","key":"10.1016\/j.inffus.2023.101923_b40","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1007\/s10278-021-00500-y","article-title":"Overall survival prediction in renal cell carcinoma patients using computed tomography radiomic and clinical information","volume":"34","author":"Khodabakhshi","year":"2021","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.inffus.2023.101923_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106457","article-title":"AGGN: Attention-based glioma grading network with multi-scale feature extraction and multi-modal information fusion","volume":"152","author":"Wu","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.inffus.2023.101923_b42","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/j.inffus.2019.09.001","article-title":"Feasibility study of a multi-criteria decision-making based hierarchical model for multi-modality feature and multi-classifier fusion: Applications in medical prognosis prediction","volume":"55","author":"He","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101923_b43","series-title":"Federated machine learning: Concept and applications","author":"Yang","year":"2019"},{"key":"10.1016\/j.inffus.2023.101923_b44","series-title":"Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume":"vol. 54","author":"McMahan","year":"2017"},{"issue":"10","key":"10.1016\/j.inffus.2023.101923_b45","doi-asserted-by":"crossref","first-page":"4229","DOI":"10.1109\/TNNLS.2019.2953131","article-title":"Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation","volume":"31","author":"Chen","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2023.101923_b46","doi-asserted-by":"crossref","unstructured":"S. Ji, S. Pan, G. Long, X. Li, J. Jiang, Z. Huang, Learning Private Neural Language Modeling with Attentive Aggregation, in: International Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019, 2019, pp. 1\u20138.","DOI":"10.1109\/IJCNN.2019.8852464"},{"key":"10.1016\/j.inffus.2023.101923_b47","unstructured":"D.A.E. Acar, Y. Zhao, R.M. Navarro, M. Mattina, P.N. Whatmough, V. Saligrama, Federated Learning Based on Dynamic Regularization, in: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021."},{"key":"10.1016\/j.inffus.2023.101923_b48","first-page":"228","article-title":"FedGroup: Efficient federated learning via decomposed similarity-based clustering","author":"Duan","year":"2021"},{"key":"10.1016\/j.inffus.2023.101923_b49","unstructured":"H. Chen, W. Chao, FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning, in: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021."},{"key":"10.1016\/j.inffus.2023.101923_b50","unstructured":"K. Donahue, J.M. Kleinberg, Model-sharing Games: Analyzing Federated Learning Under Voluntary Participation, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI."},{"issue":"1","key":"10.1016\/j.inffus.2023.101923_b51","doi-asserted-by":"crossref","first-page":"4542","DOI":"10.1038\/s41598-020-61297-4","article-title":"Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer","volume":"10","author":"Bogowicz","year":"2020","journal-title":"Sci. Rep."},{"issue":"6","key":"10.1016\/j.inffus.2023.101923_b52","doi-asserted-by":"crossref","DOI":"10.2196\/26598","article-title":"Implementing vertical federated learning using autoencoders: Practical application, generalizability, and utility study","volume":"9","author":"Cha","year":"2021","journal-title":"JMIR Med. Inform."},{"key":"10.1016\/j.inffus.2023.101923_b53","series-title":"Federated multi-view learning for private medical data integration and analysis","author":"Che","year":"2021"},{"issue":"4","key":"10.1016\/j.inffus.2023.101923_b54","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/MIS.2020.2988525","article-title":"A secure federated transfer learning framework","volume":"35","author":"Liu","year":"2020","journal-title":"IEEE Intell. Syst."},{"issue":"4","key":"10.1016\/j.inffus.2023.101923_b55","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/MIS.2020.2988604","article-title":"Fedhealth: A federated transfer learning framework for wearable healthcare","volume":"35","author":"Chen","year":"2020","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.inffus.2023.101923_b56","doi-asserted-by":"crossref","unstructured":"F. Yu, W. Zhang, Z. Qin, Z. Xu, D. Wang, C. Liu, Z. Tian, X. Chen, Fed2: Feature-Aligned Federated Learning, in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021, pp. 2066\u20132074.","DOI":"10.1145\/3447548.3467309"},{"key":"10.1016\/j.inffus.2023.101923_b57","series-title":"Brainlesion : Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes (Workshop)","first-page":"92","article-title":"Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation","author":"Sheller","year":"2019"},{"issue":"10","key":"10.1016\/j.inffus.2023.101923_b58","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2023.101923_b59","series-title":"Machine Learning in Medical Imaging","first-page":"133","article-title":"Privacy-preserving federated brain tumour segmentation","author":"Li","year":"2019"},{"issue":"12598","key":"10.1016\/j.inffus.2023.101923_b60","article-title":"Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data","volume":"10","author":"Sheller","year":"2020","journal-title":"Sci. Rep."},{"issue":"Supplement_6","key":"10.1016\/j.inffus.2023.101923_b61","doi-asserted-by":"crossref","first-page":"vi135","DOI":"10.1093\/neuonc\/noab196.532","article-title":"NIMG-32. the federated tumor segmentation(FETS) iniziative: the first real-world large-scale data-private collaboration focusing on neuro-oncology","volume":"23","author":"Baid","year":"2021","journal-title":"Neuro-Oncol."},{"key":"10.1016\/j.inffus.2023.101923_b62","unstructured":"https:\/\/fets-ai.github.io\/."},{"key":"10.1016\/j.inffus.2023.101923_b63","series-title":"MLSys","article-title":"Federated optimization in heterogeneous networks","author":"Li","year":"2020"},{"issue":"1","key":"10.1016\/j.inffus.2023.101923_b64","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1109\/TPDS.2020.3009406","article-title":"Self-balancing federated learning with global imbalanced data in mobile systems","volume":"32","author":"Duan","year":"2021","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.inffus.2023.101923_b65","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/j.neucom.2021.07.098","article-title":"Federated learning on non-IID data: A survey","volume":"465","author":"Zhu","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2023.101923_b66","series-title":"Federated knowledge distillation","author":"Seo","year":"2020"},{"key":"10.1016\/j.inffus.2023.101923_b67","series-title":"An experimental study of data heterogeneity in federated learning methods for medical imaging","author":"Qu","year":"2021"},{"key":"10.1016\/j.inffus.2023.101923_b68","series-title":"FedH2L: Federated learning with model and statistical heterogeneity","author":"Li","year":"2021"},{"key":"10.1016\/j.inffus.2023.101923_b69","first-page":"1","article-title":"A survey on multi-task learning","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2023.101923_b70","series-title":"Three approaches for personalization with applications to federated learning","author":"Mansour","year":"2020"},{"key":"10.1016\/j.inffus.2023.101923_b71","series-title":"AISTATS","first-page":"864","article-title":"Fully decentralized joint learning of personalized models and collaboration graphs","volume":"vol. 108","author":"Zantedeschi","year":"2020"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523002397?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523002397?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T15:06:54Z","timestamp":1694099214000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253523002397"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":71,"alternative-id":["S1566253523002397"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101923","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Data and model aggregation for radiomics applications: Emerging trend and open challenges","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101923","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101923"}}