{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T21:10:10Z","timestamp":1729717810755,"version":"3.28.0"},"reference-count":249,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.inffus.2023.101912","type":"journal-article","created":{"date-parts":[[2023,7,8]],"date-time":"2023-07-08T06:14:36Z","timestamp":1688796876000},"page":"101912","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Toward domain adaptation with open-set target data: Review of theory and computer vision applications"],"prefix":"10.1016","volume":"100","author":[{"ORCID":"http:\/\/orcid.org\/0009-0000-2321-4069","authenticated-orcid":false,"given":"Reyhane","family":"Ghaffari","sequence":"first","affiliation":[]},{"given":"Mohammad Sadegh","family":"Helfroush","sequence":"additional","affiliation":[]},{"given":"Abbas","family":"Khosravi","sequence":"additional","affiliation":[]},{"given":"Kamran","family":"Kazemi","sequence":"additional","affiliation":[]},{"given":"Habibollah","family":"Danyali","sequence":"additional","affiliation":[]},{"given":"Leszek","family":"Rutkowski","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.inffus.2023.101912_b1","doi-asserted-by":"crossref","first-page":"1352","DOI":"10.1109\/TPAMI.2019.2948352","article-title":"Orthogonal deep neural networks","volume":"43","author":"Li","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b2","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.inffus.2023.101912_b3","article-title":"Two-stream convolutional networks for action recognition in videos","volume":"27","author":"Simonyan","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"12","key":"10.1016\/j.inffus.2023.101912_b4","doi-asserted-by":"crossref","first-page":"8704","DOI":"10.1109\/TPAMI.2019.2918284","article-title":"Convolutional networks with dense connectivity","volume":"44","author":"Huang","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40537-016-0043-6","article-title":"A survey of transfer learning","volume":"3","author":"Weiss","year":"2016","journal-title":"J. Big Data"},{"year":"2008","series-title":"Dataset Shift in Machine Learning","author":"Quinonero-Candela","key":"10.1016\/j.inffus.2023.101912_b6"},{"issue":"4","key":"10.1016\/j.inffus.2023.101912_b7","doi-asserted-by":"crossref","first-page":"2151","DOI":"10.1109\/TCYB.2021.3110128","article-title":"D-BIN: A generalized disentangling batch instance normalization for domain adaptation","volume":"53","author":"Chen","year":"2023","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3469856","article-title":"Knowledge preserving and distribution alignment for heterogeneous domain adaptation","volume":"40","author":"Wu","year":"2021","journal-title":"ACM Trans. Inf. Syst. (TOIS)"},{"key":"10.1016\/j.inffus.2023.101912_b9","article-title":"Conditional adversarial domain adaptation","volume":"31","author":"Long","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b10","series-title":"Proceedings of the 27th ACM International Conference on Multimedia","first-page":"729","article-title":"Joint adversarial domain adaptation","author":"Li","year":"2019"},{"issue":"5","key":"10.1016\/j.inffus.2023.101912_b11","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1109\/TPAMI.2018.2832198","article-title":"Aggregating randomized clustering-promoting invariant projections for domain adaptation","volume":"41","author":"Liang","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.inffus.2023.101912_b12","first-page":"4093","article-title":"Generalized domain conditioned adaptation network","volume":"44","author":"Li","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.inffus.2023.101912_b13","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2","key":"10.1016\/j.inffus.2023.101912_b14","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.inffus.2023.101912_b15","series-title":"International Conference on Machine Learning","first-page":"97","article-title":"Learning transferable features with deep adaptation networks","author":"Long","year":"2015"},{"key":"10.1016\/j.inffus.2023.101912_b16","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4109","article-title":"Large scale fine-grained categorization and domain-specific transfer learning","author":"Cui","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b17","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.inffus.2021.09.011","article-title":"Multi-source unsupervised domain adaptation for object detection","volume":"78","author":"Zhang","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101912_b18","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5018","article-title":"Deep hashing network for unsupervised domain adaptation","author":"Venkateswara","year":"2017"},{"issue":"9","key":"10.1016\/j.inffus.2023.101912_b19","doi-asserted-by":"crossref","first-page":"4260","DOI":"10.1109\/TIP.2018.2839528","article-title":"Domain invariant and class discriminative feature learning for visual domain adaptation","volume":"27","author":"Li","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2023.101912_b20","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.neucom.2018.05.083","article-title":"Deep visual domain adaptation: A survey","volume":"312","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2023.101912_b21","series-title":"International Conference on Machine Learning","first-page":"647","article-title":"Decaf: A deep convolutional activation feature for generic visual recognition","author":"Donahue","year":"2014"},{"key":"10.1016\/j.inffus.2023.101912_b22","article-title":"How transferable are features in deep neural networks?","volume":"27","author":"Yosinski","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"11","key":"10.1016\/j.inffus.2023.101912_b23","doi-asserted-by":"crossref","first-page":"2724","DOI":"10.1109\/TPAMI.2018.2866846","article-title":"Semi-supervised domain adaptation by covariance matching","volume":"41","author":"Li","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b24","series-title":"International Conference on Machine Learning","first-page":"2208","article-title":"Deep transfer learning with joint adaptation networks","author":"Long","year":"2017"},{"article-title":"Multi-adversarial domain adaptation","year":"2018","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32","author":"Pei","key":"10.1016\/j.inffus.2023.101912_b25"},{"key":"10.1016\/j.inffus.2023.101912_b26","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"135","article-title":"Partial adversarial domain adaptation","author":"Cao","year":"2018"},{"issue":"7","key":"10.1016\/j.inffus.2023.101912_b27","doi-asserted-by":"crossref","first-page":"2329","DOI":"10.1109\/TPAMI.2020.2964173","article-title":"Deep residual correction network for partial domain adaptation","volume":"43","author":"Li","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b28","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"153","article-title":"Open set domain adaptation by backpropagation","author":"Saito","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b29","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2927","article-title":"Separate to adapt: Open set domain adaptation via progressive separation","author":"Liu","year":"2019"},{"article-title":"Learning factorized representations for open-set domain adaptation","year":"2019","series-title":"7th International Conference on Learning Representations, ICLR","author":"Baktashmotlagh","key":"10.1016\/j.inffus.2023.101912_b30"},{"key":"10.1016\/j.inffus.2023.101912_b31","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2720","article-title":"Universal domain adaptation","author":"You","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b32","series-title":"Proceedings of the 30th ACM International Conference on Multimedia","first-page":"2258","article-title":"Universal domain adaptive object detector","author":"Shi","year":"2022"},{"key":"10.1016\/j.inffus.2023.101912_b33","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"754","article-title":"Open set domain adaptation","author":"Panareda Busto","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b34","doi-asserted-by":"crossref","first-page":"2732","DOI":"10.1109\/TMM.2020.3016126","article-title":"Adversarial network with multiple classifiers for open set domain adaptation","volume":"23","author":"Shermin","year":"2020","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2023.101912_b35","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"7990","article-title":"Attract or distract: Exploit the margin of open set","author":"Feng","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b36","series-title":"AAAI Conference on Artificial Intelligence","first-page":"3161","article-title":"Self-labeling framework for novel category discovery over domains","author":"Yu","year":"2022"},{"key":"10.1016\/j.inffus.2023.101912_b37","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"13867","article-title":"Exploring category-agnostic clusters for open-set domain adaptation","author":"Pan","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b38","series-title":"2020 25th International Conference on Pattern Recognition","first-page":"4626","article-title":"Open set domain recognition via attention-based GCN and semantic matching optimization","author":"He","year":"2021"},{"issue":"3","key":"10.1016\/j.inffus.2023.101912_b39","doi-asserted-by":"crossref","first-page":"766","DOI":"10.1109\/TPAMI.2019.2945942","article-title":"A review of domain adaptation without target labels","volume":"43","author":"Kouw","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.inffus.2023.101912_b40","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1109\/TNNLS.2020.3028503","article-title":"A review of single-source deep unsupervised visual domain adaptation","volume":"33","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"year":"2017","series-title":"Domain adaptation for visual applications: A comprehensive survey","author":"Csurka","key":"10.1016\/j.inffus.2023.101912_b41"},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b42","doi-asserted-by":"crossref","DOI":"10.1561\/116.00000192","article-title":"Deep unsupervised domain adaptation: a review of recent advances and perspectives","volume":"11","author":"Liu","year":"2022","journal-title":"APSIPA Trans. Signal Inf. Process."},{"key":"10.1016\/j.inffus.2023.101912_b43","series-title":"Advances in Data Science and Information Engineering","first-page":"877","article-title":"A brief review of domain adaptation","author":"Farahani","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b44","first-page":"1","article-title":"Transfer adaptation learning: A decade survey","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"year":"2021","series-title":"A survey of unsupervised domain adaptation for visual recognition","author":"Zhang","key":"10.1016\/j.inffus.2023.101912_b45"},{"year":"2020","series-title":"A survey on domain adaptation theory: learning bounds and theoretical guarantees","author":"Redko","key":"10.1016\/j.inffus.2023.101912_b46"},{"key":"10.1016\/j.inffus.2023.101912_b47","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.inffus.2014.12.003","article-title":"A survey of multi-source domain adaptation","volume":"24","author":"Sun","year":"2015","journal-title":"Inf. Fusion"},{"year":"2020","series-title":"Multi-source domain adaptation in the deep learning era: A systematic survey","author":"Zhao","key":"10.1016\/j.inffus.2023.101912_b48"},{"year":"2021","series-title":"Unsupervised domain adaptation for semantic image segmentation: a comprehensive survey","author":"Csurka","key":"10.1016\/j.inffus.2023.101912_b49"},{"article-title":"Neural unsupervised domain adaptation in NLP\u2014A survey","year":"2020","series-title":"The 28th International Conference on Computational Linguistics","author":"Ramponi","key":"10.1016\/j.inffus.2023.101912_b50"},{"key":"10.1016\/j.inffus.2023.101912_b51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TPAMI.2022.3217046","article-title":"Unsupervised domain adaptation of object detectors: A survey","author":"Oza","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b52","doi-asserted-by":"crossref","first-page":"9842","DOI":"10.1109\/JSTARS.2022.3220875","article-title":"Domain adaptation in remote sensing image classification: A survey","volume":"15","author":"Peng","year":"2022","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"year":"2022","series-title":"Video unsupervised domain adaptation with deep learning: A comprehensive survey","author":"Xu","key":"10.1016\/j.inffus.2023.101912_b53"},{"issue":"3","key":"10.1016\/j.inffus.2023.101912_b54","doi-asserted-by":"crossref","first-page":"1173","DOI":"10.1109\/TBME.2021.3117407","article-title":"Domain adaptation for medical image analysis: a survey","volume":"69","author":"Guan","year":"2021","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b55","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/JPROC.2020.3004555","article-title":"A comprehensive survey on transfer learning","volume":"109","author":"Zhuang","year":"2020","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.inffus.2023.101912_b56","series-title":"Artificial Neural Networks and Machine Learning\u2013ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27","first-page":"270","article-title":"A survey on deep transfer learning","author":"Tan","year":"2018"},{"issue":"2","key":"10.1016\/j.inffus.2023.101912_b57","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1109\/JAS.2022.106004","article-title":"A survey on negative transfer","volume":"10","author":"Zhang","year":"2023","journal-title":"IEEE\/CAA J. Autom. Sin."},{"key":"10.1016\/j.inffus.2023.101912_b58","article-title":"Analysis of representations for domain adaptation","volume":"19","author":"Ben-David","year":"2006","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b59","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10994-009-5152-4","article-title":"A theory of learning from different domains","volume":"79","author":"Ben-David","year":"2010","journal-title":"Mach. Learn."},{"article-title":"Domain adaptation: Learning bounds and algorithms","year":"2009","series-title":"22nd Conference on Learning Theory, COLT","author":"Mansour","key":"10.1016\/j.inffus.2023.101912_b60"},{"key":"10.1016\/j.inffus.2023.101912_b61","series-title":"International Conference on Machine Learning","first-page":"7404","article-title":"Bridging theory and algorithm for domain adaptation","author":"Zhang","year":"2019"},{"issue":"5","key":"10.1016\/j.inffus.2023.101912_b62","doi-asserted-by":"crossref","first-page":"2775","DOI":"10.1109\/TPAMI.2020.3036956","article-title":"Unsupervised multi-class domain adaptation: Theory, algorithms, and practice","volume":"44","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"9","key":"10.1016\/j.inffus.2023.101912_b63","doi-asserted-by":"crossref","first-page":"1853","DOI":"10.1109\/TPAMI.2016.2615921","article-title":"Optimal transport for domain adaptation","volume":"39","author":"Courty","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b64","article-title":"Joint distribution optimal transportation for domain adaptation","volume":"30","author":"Courty","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"10","key":"10.1016\/j.inffus.2023.101912_b65","doi-asserted-by":"crossref","first-page":"4309","DOI":"10.1109\/TNNLS.2020.3017213","article-title":"Open set domain adaptation: Theoretical bound and algorithm","volume":"32","author":"Fang","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b66","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNNLS.2021.3071196","article-title":"Bridging the theoretical bound and deep algorithms for open set domain adaptation","author":"Zhong","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b67","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33","first-page":"4122","article-title":"Unsupervised domain adaptation based on source-guided discrepancy","author":"Kuroki","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b68","series-title":"2020 IEEE International Conference on Multimedia and Expo","first-page":"1","article-title":"Learning likelihood estimates for open set domain adaptation","author":"Zhang","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b69","series-title":"European Conference on Computer Vision","first-page":"735","article-title":"Multi-source open-set deep adversarial domain adaptation","author":"Rakshit","year":"2020"},{"year":"2023","series-title":"Open-set multi-source multi-target domain adaptation","author":"Lal","key":"10.1016\/j.inffus.2023.101912_b70"},{"key":"10.1016\/j.inffus.2023.101912_b71","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"12376","article-title":"Towards inheritable models for open-set domain adaptation","author":"Kundu","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b72","first-page":"1","article-title":"Source-free progressive graph learning for open-set domain adaptation","author":"Luo","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.inffus.2023.101912_b73","first-page":"1","article-title":"Source-free unsupervised domain adaptation with trusted pseudo samples","volume":"14","author":"Tian","year":"2023","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"10","key":"10.1016\/j.inffus.2023.101912_b74","doi-asserted-by":"crossref","first-page":"3614","DOI":"10.1109\/TPAMI.2020.2981604","article-title":"Recent advances in open set recognition: A survey","volume":"43","author":"Geng","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b75","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1563","article-title":"Towards open set deep networks","author":"Bendale","year":"2016"},{"key":"10.1016\/j.inffus.2023.101912_b76","article-title":"Generative probabilistic novelty detection with adversarial autoencoders","volume":"31","author":"Pidhorskyi","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"article-title":"Generative OpenMax for multi-class open set classification","year":"2017","series-title":"British Machine Vision Conference","author":"Ge","key":"10.1016\/j.inffus.2023.101912_b77"},{"year":"2020","series-title":"Open set recognition with conditional probabilistic generative models","author":"Sun","key":"10.1016\/j.inffus.2023.101912_b78"},{"key":"10.1016\/j.inffus.2023.101912_b79","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"146","article-title":"Unsupervised anomaly detection with generative adversarial networks to guide marker discovery","author":"Schlegl","year":"2017"},{"issue":"7","key":"10.1016\/j.inffus.2023.101912_b80","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1109\/TPAMI.2012.256","article-title":"Toward open set recognition","volume":"35","author":"Scheirer","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b81","series-title":"AAAI, Vol. 1","first-page":"3","article-title":"Zero-data learning of new tasks","author":"Larochelle","year":"2008"},{"key":"10.1016\/j.inffus.2023.101912_b82","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"951","article-title":"Learning to detect unseen object classes by between-class attribute transfer","author":"Lampert","year":"2009"},{"key":"10.1016\/j.inffus.2023.101912_b83","article-title":"Transfer learning in a transductive setting","volume":"26","author":"Rohrbach","year":"2013","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2020","series-title":"Generative adversarial zero-shot learning via knowledge graphs","author":"Geng","key":"10.1016\/j.inffus.2023.101912_b84"},{"key":"10.1016\/j.inffus.2023.101912_b85","article-title":"Generative adversarial nets","volume":"27","author":"Goodfellow","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b86","series-title":"International Conference on Machine Learning","first-page":"1180","article-title":"Unsupervised domain adaptation by backpropagation","author":"Ganin","year":"2015"},{"year":"2014","series-title":"Conditional generative adversarial nets","author":"Mirza","key":"10.1016\/j.inffus.2023.101912_b87"},{"key":"10.1016\/j.inffus.2023.101912_b88","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5031","article-title":"Domain-symmetric networks for adversarial domain adaptation","author":"Zhang","year":"2019"},{"issue":"11","key":"10.1016\/j.inffus.2023.101912_b89","doi-asserted-by":"crossref","first-page":"3918","DOI":"10.1109\/TPAMI.2020.2991050","article-title":"Maximum density divergence for domain adaptation","volume":"43","author":"Li","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b90","series-title":"International Conference on Machine Learning","first-page":"224","article-title":"Generalization and equilibrium in generative adversarial nets (gans)","author":"Arora","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b91","article-title":"Improved techniques for training gans","volume":"29","author":"Salimans","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b92","series-title":"2019 IEEE International Conference on Multimedia and Expo","first-page":"1258","article-title":"Improving open set domain adaptation using image-to-image translation","author":"Zhang","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b93","series-title":"European Conference on Computer Vision","first-page":"393","article-title":"Multi-class open set recognition using probability of inclusion","author":"Jain","year":"2014"},{"key":"10.1016\/j.inffus.2023.101912_b94","article-title":"Semi-supervised learning by entropy minimization","volume":"17","author":"Grandvalet","year":"2004","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b95","article-title":"Unsupervised domain adaptation with residual transfer networks","volume":"29","author":"Long","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b96","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"9322","article-title":"Towards novel target discovery through open-set domain adaptation","author":"Jing","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b97","doi-asserted-by":"crossref","first-page":"5807","DOI":"10.1109\/TIP.2021.3088642","article-title":"Knowledge exchange between domain-adversarial and private networks improves open set image classification","volume":"30","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2023.101912_b98","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2985","article-title":"Learning to transfer examples for partial domain adaptation","author":"Cao","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b99","series-title":"International Conference on Machine Learning","first-page":"2642","article-title":"Conditional image synthesis with auxiliary classifier gans","author":"Odena","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b100","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"9117","article-title":"Rethinking feature distribution for loss functions in image classification","author":"Wan","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b101","series-title":"International Conference on Machine Learning","first-page":"507","article-title":"Large-margin softmax loss for convolutional neural networks","author":"Liu","year":"2016"},{"key":"10.1016\/j.inffus.2023.101912_b102","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"1426","article-title":"Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation","author":"Xu","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b103","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.neucom.2020.05.032","article-title":"Adversarial open set domain adaptation via progressive selection of transferable target samples","volume":"410","author":"Gao","year":"2020","journal-title":"Neurocomputing"},{"year":"2020","series-title":"Mind the gap: Enlarging the domain gap in open set domain adaptation","author":"Chang","key":"10.1016\/j.inffus.2023.101912_b104"},{"article-title":"Unknown-aware domain adversarial learning for open-set domain adaptation","year":"2022","series-title":"Advances in Neural Information Processing Systems","author":"Jang","key":"10.1016\/j.inffus.2023.101912_b105"},{"year":"2020","series-title":"Against adversarial learning: Naturally distinguish known and unknown in open set domain adaptation","author":"Mao","key":"10.1016\/j.inffus.2023.101912_b106"},{"key":"10.1016\/j.inffus.2023.101912_b107","first-page":"1","article-title":"PSDC: A prototype-based shared-dummy classifier model for open-set domain adaptation","author":"Liu","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2023.101912_b108","series-title":"Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence","first-page":"2540","article-title":"Joint partial optimal transport for open set domain adaptation","author":"Xu","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b109","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3722","article-title":"Unsupervised pixel-level domain adaptation with generative adversarial networks","author":"Bousmalis","year":"2017"},{"article-title":"Unsupervised cross-domain image generation","year":"2016","series-title":"International Conference on Learning Representations","author":"Taigman","key":"10.1016\/j.inffus.2023.101912_b110"},{"key":"10.1016\/j.inffus.2023.101912_b111","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"8503","article-title":"Generate to adapt: Aligning domains using generative adversarial networks","author":"Sankaranarayanan","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b112","article-title":"Coupled generative adversarial networks","volume":"29","author":"Liu","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b113","series-title":"International Conference on Machine Learning","first-page":"1989","article-title":"Cycada: Cycle-consistent adversarial domain adaptation","author":"Hoffman","year":"2018"},{"issue":"11","key":"10.1016\/j.inffus.2023.101912_b114","doi-asserted-by":"crossref","first-page":"11491","DOI":"10.1109\/TCYB.2021.3107292","article-title":"Mutual variational inference: An indirect variational inference approach for unsupervised domain adaptation","volume":"52","author":"Chen","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2023.101912_b115","doi-asserted-by":"crossref","first-page":"2407","DOI":"10.1109\/TMM.2021.3080516","article-title":"Informative feature disentanglement for unsupervised domain adaptation","volume":"24","author":"Deng","year":"2021","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2023.101912_b116","series-title":"European Conference on Computer Vision","first-page":"597","article-title":"Deep reconstruction-classification networks for unsupervised domain adaptation","author":"Ghifary","year":"2016"},{"key":"10.1016\/j.inffus.2023.101912_b117","article-title":"Domain separation networks","volume":"29","author":"Bousmalis","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b118","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.patrec.2020.06.003","article-title":"Positive-unlabeled learning for open set domain adaptation","volume":"136","author":"Loghmani","year":"2020","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b119","first-page":"723","article-title":"A kernel two-sample test","volume":"13","author":"Gretton","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2023.101912_b120","series-title":"European Conference on Computer Vision","first-page":"443","article-title":"Deep coral: Correlation alignment for deep domain adaptation","author":"Sun","year":"2016"},{"article-title":"Supervised representation learning: Transfer learning with deep autoencoders","year":"2015","series-title":"Twenty-Fourth International Joint Conference on Artificial Intelligence","author":"Zhuang","key":"10.1016\/j.inffus.2023.101912_b121"},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b122","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2023.101912_b123","article-title":"A kernel method for the two-sample-problem","volume":"19","author":"Gretton","year":"2006","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b124","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"2200","article-title":"Transfer feature learning with joint distribution adaptation","author":"Long","year":"2013"},{"key":"10.1016\/j.inffus.2023.101912_b125","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2272","article-title":"Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation","author":"Yan","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b126","series-title":"2017 IEEE International Conference on Data Mining","first-page":"1129","article-title":"Balanced distribution adaptation for transfer learning","author":"Wang","year":"2017"},{"issue":"4","key":"10.1016\/j.inffus.2023.101912_b127","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.1109\/TNNLS.2020.2988928","article-title":"Deep subdomain adaptation network for image classification","volume":"32","author":"Zhu","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b128","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"5542","article-title":"Deeper, broader and artier domain generalization","author":"Li","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b129","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34","first-page":"11386","article-title":"Domain conditioned adaptation network","author":"Li","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b130","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.inffus.2023.101912_b131","first-page":"1","article-title":"Open set domain adaptation via joint alignment and category separation","author":"Liu","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"3","key":"10.1016\/j.inffus.2023.101912_b132","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1007\/s10994-016-5610-8","article-title":"Nearest neighbors distance ratio open-set classifier","volume":"106","author":"Mendes J\u00fanior","year":"2017","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b133","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1137\/S0036141002410927","article-title":"Minimizing flows for the Monge\u2013Kantorovich problem","volume":"35","author":"Angenent","year":"2003","journal-title":"SIAM J. Math. Anal."},{"key":"10.1016\/j.inffus.2023.101912_b134","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"447","article-title":"Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation","author":"Damodaran","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b135","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"412","article-title":"Open set domain adaptation using optimal transport","author":"Kechaou","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b136","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"24110","article-title":"Adjustment and alignment for unbiased open set domain adaptation","author":"Li","year":"2023"},{"year":"2021","series-title":"Progressively select and reject pseudo-labelled samples for open-set domain adaptation","author":"Wang","key":"10.1016\/j.inffus.2023.101912_b137"},{"key":"10.1016\/j.inffus.2023.101912_b138","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34","first-page":"6243","article-title":"Unsupervised domain adaptation via structured prediction based selective pseudo-labeling","author":"Wang","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b139","series-title":"2019 International Joint Conference on Neural Networks","first-page":"1","article-title":"Unifying unsupervised domain adaptation and zero-shot visual recognition","author":"Wang","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b140","article-title":"Locality preserving projections","volume":"16","author":"He","year":"2003","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"11","key":"10.1016\/j.inffus.2023.101912_b141","doi-asserted-by":"crossref","first-page":"4037","DOI":"10.1109\/TPAMI.2020.2992393","article-title":"Self-supervised visual feature learning with deep neural networks: A survey","volume":"43","author":"Jing","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2018","series-title":"Self-supervised gan to counter forgetting","author":"Chen","key":"10.1016\/j.inffus.2023.101912_b142"},{"key":"10.1016\/j.inffus.2023.101912_b143","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"123","article-title":"Self-supervised learning for domain adaptation on point clouds","author":"Achituve","year":"2021"},{"article-title":"Unsupervised person re-identification with iterative self-supervised domain adaptation","year":"2019","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops","author":"Tang","key":"10.1016\/j.inffus.2023.101912_b144"},{"key":"10.1016\/j.inffus.2023.101912_b145","doi-asserted-by":"crossref","first-page":"156694","DOI":"10.1109\/ACCESS.2019.2949697","article-title":"Self-supervised domain adaptation for computer vision tasks","volume":"7","author":"Xu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.inffus.2023.101912_b146","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2229","article-title":"Domain generalization by solving jigsaw puzzles","author":"Carlucci","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b147","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"1864","article-title":"Mlsl: Multi-level self-supervised learning for domain adaptation with spatially independent and semantically consistent labeling","author":"Iqbal","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b148","series-title":"European Conference on Computer Vision","first-page":"422","article-title":"On the effectiveness of image rotation for open set domain adaptation","author":"Bucci","year":"2020"},{"article-title":"Unsupervised representation learning by predicting image rotations","year":"2018","series-title":"International Conference on Learning Representations","author":"Gidaris","key":"10.1016\/j.inffus.2023.101912_b149"},{"key":"10.1016\/j.inffus.2023.101912_b150","article-title":"Deep anomaly detection using geometric transformations","volume":"31","author":"Golan","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b151","series-title":"International Conference on Machine Learning","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","author":"Chen","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b152","series-title":"2017 IEEE International Conference on Image Processing","first-page":"2851","article-title":"Contrastive-center loss for deep neural networks","author":"Qi","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b153","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"2765","article-title":"Associative domain adaptation","author":"Haeusser","year":"2017"},{"year":"2020","series-title":"Prototypical contrastive learning of unsupervised representations","author":"Li","key":"10.1016\/j.inffus.2023.101912_b154"},{"key":"10.1016\/j.inffus.2023.101912_b155","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"13834","article-title":"Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation","author":"Yue","year":"2021"},{"article-title":"Decoupling representation and classifier for long-tailed recognition","year":"2019","series-title":"International Conference on Learning Representations","author":"Kang","key":"10.1016\/j.inffus.2023.101912_b156"},{"key":"10.1016\/j.inffus.2023.101912_b157","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3941","article-title":"Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations","author":"Cui","year":"2020"},{"issue":"7","key":"10.1016\/j.inffus.2023.101912_b158","doi-asserted-by":"crossref","first-page":"7862","DOI":"10.1007\/s10489-022-03805-9","article-title":"Open-set domain adaptation by deconfounding domain gaps","volume":"53","author":"Zhao","year":"2023","journal-title":"Appl. Intell."},{"key":"10.1016\/j.inffus.2023.101912_b159","article-title":"Prototypical networks for few-shot learning","volume":"30","author":"Snell","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b160","series-title":"European Conference on Computer Vision","first-page":"121","article-title":"Embedding propagation: Smoother manifold for few-shot classification","author":"Rodr\u00edguez","year":"2020"},{"article-title":"Graph attention networks","year":"2017","series-title":"International Conference on Learning Representations","author":"Veli\u010dkovi\u0107","key":"10.1016\/j.inffus.2023.101912_b161"},{"key":"10.1016\/j.inffus.2023.101912_b162","article-title":"Learning to combine foveal glimpses with a third-order Boltzmann machine","volume":"23","author":"Larochelle","year":"2010","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b163","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34","first-page":"11555","article-title":"Filtration and distillation: Enhancing region attention for fine-grained visual categorization","author":"Liu","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b164","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7132","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b165","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"750","article-title":"Unsupervised open domain recognition by semantic discrepancy minimization","author":"Zhuo","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b166","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1024","article-title":"Transductive unbiased embedding for zero-shot learning","author":"Song","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b167","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"207","article-title":"Learning to generate the unknowns as a remedy to the open-set domain shift","author":"Baktashmotlagh","year":"2022"},{"key":"10.1016\/j.inffus.2023.101912_b168","series-title":"2019 IEEE International Conference on Image Processing","first-page":"2506","article-title":"Improved open set domain adaptation with backpropagation","author":"Fu","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b169","series-title":"International Conference on Machine Learning","first-page":"4013","article-title":"Transferable adversarial training: A general approach to adapting deep classifiers","author":"Liu","year":"2019"},{"issue":"8","key":"10.1016\/j.inffus.2023.101912_b170","doi-asserted-by":"crossref","first-page":"1979","DOI":"10.1109\/TPAMI.2018.2858821","article-title":"Virtual adversarial training: a regularization method for supervised and semi-supervised learning","volume":"41","author":"Miyato","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"article-title":"Training deep neural-networks using a noise adaptation layer","year":"2017","series-title":"International Conference on Learning Representations","author":"Goldberger","key":"10.1016\/j.inffus.2023.101912_b171"},{"key":"10.1016\/j.inffus.2023.101912_b172","article-title":"Swapout: Learning an ensemble of deep architectures","volume":"29","author":"Singh","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b173","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3356","article-title":"Branchout: Regularization for online ensemble tracking with convolutional neural networks","author":"Han","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b174","article-title":"Incremental boosting convolutional neural network for facial action unit recognition","volume":"29","author":"Han","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b175","series-title":"IJCAI","first-page":"1932","article-title":"Self-paced boost learning for classification","author":"Pi","year":"2016"},{"year":"2020","series-title":"Collaborative training of balanced random forests for open set domain adaptation","author":"Ryu","key":"10.1016\/j.inffus.2023.101912_b176"},{"key":"10.1016\/j.inffus.2023.101912_b177","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109850","article-title":"GCL-OSDA: Uncertainty prediction-based graph collaborative learning for open-set domain adaptation","volume":"256","author":"Dai","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.inffus.2023.101912_b178","series-title":"International Conference on Machine Learning","first-page":"6468","article-title":"Progressive graph learning for open-set domain adaptation","author":"Luo","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b179","article-title":"Evidential deep learning to quantify classification uncertainty","volume":"31","author":"Sensoy","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2021","series-title":"Open set domain adaptation with zero-shot learning on graph","author":"Zhang","key":"10.1016\/j.inffus.2023.101912_b180"},{"key":"10.1016\/j.inffus.2023.101912_b181","doi-asserted-by":"crossref","first-page":"9154","DOI":"10.1109\/ACCESS.2021.3049552","article-title":"Exploring category attention for open set domain adaptation","volume":"9","author":"Wang","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.inffus.2023.101912_b182","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016"},{"key":"10.1016\/j.inffus.2023.101912_b183","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"3","article-title":"Cbam: Convolutional block attention module","author":"Woo","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b184","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35","first-page":"8013","article-title":"Balanced open set domain adaptation via centroid alignment","author":"Jing","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b185","series-title":"34th Conference on Uncertainty in Artificial Intelligence","first-page":"856","article-title":"Hyperspherical variational auto-encoders","author":"Davidson","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b186","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33","first-page":"8682","article-title":"Angular triplet-center loss for multi-view 3d shape retrieval","author":"Li","year":"2019"},{"year":"2000","series-title":"Extreme Value Distributions: Theory and Applications","author":"Kotz","key":"10.1016\/j.inffus.2023.101912_b187"},{"key":"10.1016\/j.inffus.2023.101912_b188","series-title":"International Conference on Machine Learning","first-page":"5423","article-title":"Learning semantic representations for unsupervised domain adaptation","author":"Xie","year":"2018"},{"article-title":"Self-ensembling for visual domain adaptation","year":"2018","series-title":"International Conference on Learning Representations","author":"French","key":"10.1016\/j.inffus.2023.101912_b189"},{"key":"10.1016\/j.inffus.2023.101912_b190","article-title":"Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results","volume":"30","author":"Tarvainen","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"article-title":"A DIRT-T approach to unsupervised domain adaptation","year":"2018","series-title":"International Conference on Learning Representations","author":"Shu","key":"10.1016\/j.inffus.2023.101912_b191"},{"key":"10.1016\/j.inffus.2023.101912_b192","unstructured":"J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, Oakland, CA, USA, 1967, pp. 281\u2013297."},{"key":"10.1016\/j.inffus.2023.101912_b193","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"212","article-title":"Sphereface: Deep hypersphere embedding for face recognition","author":"Liu","year":"2017"},{"article-title":"Learning deep representations by mutual information estimation and maximization","year":"2018","series-title":"International Conference on Learning Representations","author":"Hjelm","key":"10.1016\/j.inffus.2023.101912_b194"},{"year":"2022","series-title":"Open set domain adaptation by novel class discovery","author":"Zhuang","key":"10.1016\/j.inffus.2023.101912_b195"},{"key":"10.1016\/j.inffus.2023.101912_b196","series-title":"European Conference on Computer Vision","first-page":"464","article-title":"Minimum class confusion for versatile domain adaptation","author":"Jin","year":"2020"},{"article-title":"Automatically discovering and learning new visual categories with ranking statistics","year":"2020","series-title":"International Conference on Learning Representations","author":"Han","key":"10.1016\/j.inffus.2023.101912_b197"},{"key":"10.1016\/j.inffus.2023.101912_b198","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.02.030","article-title":"Open set domain adaptation with latent structure discovery and kernelized classifier learning","author":"Tang","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2023.101912_b199","first-page":"1","article-title":"WDAN: A weighted discriminative adversarial network with dual classifiers for fine-grained open-set domain adaptation","author":"Li","year":"2023","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"year":"2020","series-title":"An image is worth 16x16 words: Transformers for image recognition at scale","author":"Dosovitskiy","key":"10.1016\/j.inffus.2023.101912_b200"},{"year":"2023","series-title":"Imbalanced open set domain adaptation via moving-threshold estimation and gradual alignment","author":"Tao","key":"10.1016\/j.inffus.2023.101912_b201"},{"key":"10.1016\/j.inffus.2023.101912_b202","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"7354","article-title":"Domain-specific batch normalization for unsupervised domain adaptation","author":"Chang","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b203","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"9213","article-title":"Progressive adversarial networks for fine-grained domain adaptation","author":"Wang","year":"2020"},{"key":"10.1016\/j.inffus.2023.101912_b204","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"6262","article-title":"Pie: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction","author":"Rasouli","year":"2019"},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b205","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0893-6080(98)00116-6","article-title":"On the momentum term in gradient descent learning algorithms","volume":"12","author":"Qian","year":"1999","journal-title":"Neural Netw."},{"year":"2018","series-title":"Syn2real: A new benchmark forsynthetic-to-real visual domain adaptation","author":"Peng","key":"10.1016\/j.inffus.2023.101912_b206"},{"issue":"12","key":"10.1016\/j.inffus.2023.101912_b207","doi-asserted-by":"crossref","first-page":"5770","DOI":"10.1109\/TKDE.2021.3060473","article-title":"Faster domain adaptation networks","volume":"34","author":"Li","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2023.101912_b208","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"451","article-title":"Domain adaptation in the absence of source domain data","author":"Chidlovskii","year":"2016"},{"year":"2018","series-title":"Efficient deep learning on multi-source private data","author":"Hynes","key":"10.1016\/j.inffus.2023.101912_b209"},{"article-title":"Training confidence-calibrated classifiers for detecting out-of-distribution samples","year":"2018","series-title":"6th International Conference on Learning Representations, ICLR","author":"Lee","key":"10.1016\/j.inffus.2023.101912_b210"},{"key":"10.1016\/j.inffus.2023.101912_b211","series-title":"International Conference on Machine Learning","first-page":"6438","article-title":"Manifold mixup: Better representations by interpolating hidden states","author":"Verma","year":"2019"},{"article-title":"Mixup: Beyond empirical risk minimization","year":"2017","series-title":"International Conference on Learning Representations","author":"Zhang","key":"10.1016\/j.inffus.2023.101912_b212"},{"key":"10.1016\/j.inffus.2023.101912_b213","doi-asserted-by":"crossref","first-page":"6473","DOI":"10.1109\/TIP.2021.3093393","article-title":"Open-set hypothesis transfer with semantic consistency","volume":"30","author":"Feng","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2023.101912_b214","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"1119","article-title":"Distance-based hyperspherical classification for multi-source open-set domain adaptation","author":"Bucci","year":"2022"},{"key":"10.1016\/j.inffus.2023.101912_b215","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"14340","article-title":"Adaptive methods for real-world domain generalization","author":"Dubey","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b216","series-title":"Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data","first-page":"93","article-title":"LOF: identifying density-based local outliers","author":"Breunig","year":"2000"},{"key":"10.1016\/j.inffus.2023.101912_b217","series-title":"European Conference on Computer Vision","first-page":"213","article-title":"Adapting visual category models to new domains","author":"Saenko","year":"2010"},{"key":"10.1016\/j.inffus.2023.101912_b218","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"1406","article-title":"Moment matching for multi-source domain adaptation","author":"Peng","year":"2019"},{"year":"2017","series-title":"Visda: The visual domain adaptation challenge","author":"Peng","key":"10.1016\/j.inffus.2023.101912_b219"},{"issue":"11","key":"10.1016\/j.inffus.2023.101912_b220","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"issue":"5","key":"10.1016\/j.inffus.2023.101912_b221","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1109\/34.291440","article-title":"A database for handwritten text recognition research","volume":"16","author":"Hull","year":"1994","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"article-title":"Reading digits in natural images with unsupervised feature learning","year":"2011","series-title":"NIPS Workshop on Deep Learning and Unsupervised Feature Learning","author":"Netzer","key":"10.1016\/j.inffus.2023.101912_b222"},{"key":"10.1016\/j.inffus.2023.101912_b223","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vis."},{"year":"2007","series-title":"Caltech-256 Object Category Dataset","author":"Griffin","key":"10.1016\/j.inffus.2023.101912_b224"},{"key":"10.1016\/j.inffus.2023.101912_b225","series-title":"ACM Multimedia Asia","first-page":"1","article-title":"Conditional extreme value theory for open set video domain adaptation","author":"Chen","year":"2021"},{"year":"2023","series-title":"Simplifying open-set video domain adaptation with contrastive learning","author":"Zara","key":"10.1016\/j.inffus.2023.101912_b226"},{"key":"10.1016\/j.inffus.2023.101912_b227","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2023.3307604","article-title":"A self-supervised-driven open-set unsupervised domain adaptation method for optical remote sensing image scene classification and retrieval","volume":"61","author":"Wang","year":"2023","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2023.101912_b228","first-page":"1","article-title":"An open set domain adaptation algorithm via exploring transferability and discriminability for remote sensing image scene classification","volume":"60","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2023.101912_b229","first-page":"1","article-title":"Transferable SAR image classification crossing different satellites under open set condition","volume":"19","author":"Zhao","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2023.101912_b230","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.inffus.2021.05.008","article-title":"A review of uncertainty quantification in deep learning: Techniques, applications and challenges","volume":"76","author":"Abdar","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101912_b231","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"8050","article-title":"Semi-supervised domain adaptation via minimax entropy","author":"Saito","year":"2019"},{"key":"10.1016\/j.inffus.2023.101912_b232","series-title":"2020 25th International Conference on Pattern Recognition","first-page":"1812","article-title":"Enlarging discriminative power by adding an extra class in unsupervised domain adaptation","author":"Tran","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b233","first-page":"1","article-title":"Self-labeling framework for open-set domain adaptation with few labeled samples","author":"Yu","year":"2023","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2023.101912_b234","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4029","article-title":"Open-set domain adaptation under few source-domain labeled samples","author":"Rakshit","year":"2022"},{"key":"10.1016\/j.inffus.2023.101912_b235","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3733","article-title":"Unsupervised feature learning via non-parametric instance discrimination","author":"Wu","year":"2018"},{"key":"10.1016\/j.inffus.2023.101912_b236","first-page":"1","article-title":"Uncertainty-aware aggregation for federated open set domain adaptation","author":"Qin","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2023.101912_b237","series-title":"Artificial Intelligence and Statistics","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","year":"2017"},{"key":"10.1016\/j.inffus.2023.101912_b238","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106775","article-title":"A survey on federated learning","volume":"216","author":"Zhang","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.inffus.2023.101912_b239","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-9-462","article-title":"Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer","volume":"9","author":"Giancarlo","year":"2008","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.inffus.2023.101912_b240","series-title":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"2039","article-title":"Domain adaptation with dynamic open-set targets","author":"Wu","year":"2022"},{"issue":"5","key":"10.1016\/j.inffus.2023.101912_b241","doi-asserted-by":"crossref","first-page":"5513","DOI":"10.1109\/TPAMI.2022.3213473","article-title":"Class-incremental learning: Survey and performance evaluation on image classification","volume":"45","author":"Masana","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"9","key":"10.1016\/j.inffus.2023.101912_b242","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3472291","article-title":"A survey of deep active learning","volume":"54","author":"Ren","year":"2021","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.inffus.2023.101912_b243","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"15242","article-title":"Dynamic weighted learning for unsupervised domain adaptation","author":"Xiao","year":"2021"},{"key":"10.1016\/j.inffus.2023.101912_b244","first-page":"1","article-title":"Generalizing to unseen domains: A survey on domain generalization","author":"Wang","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2023.101912_b245","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33","first-page":"9801","article-title":"Learning and the unknown: Surveying steps toward open world recognition","author":"Boult","year":"2019"},{"issue":"9","key":"10.1016\/j.inffus.2023.101912_b246","doi-asserted-by":"crossref","first-page":"2419","DOI":"10.1109\/TMM.2019.2902100","article-title":"Deep multi-modality adversarial networks for unsupervised domain adaptation","volume":"21","author":"Ma","year":"2019","journal-title":"IEEE Trans. Multimed."},{"issue":"12","key":"10.1016\/j.inffus.2023.101912_b247","doi-asserted-by":"crossref","first-page":"3641","DOI":"10.1109\/TMI.2021.3093883","article-title":"Anomaly detection for medical images using self-supervised and translation-consistent features","volume":"40","author":"Zhao","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2023.101912_b248","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI","first-page":"682","article-title":"Delving into local features for open-set domain adaptation in fundus image analysis","author":"Zhou","year":"2022"},{"year":"2021","series-title":"Evaluation of various open-set medical imaging tasks with deep neural networks","author":"Ge","key":"10.1016\/j.inffus.2023.101912_b249"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523002282?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523002282?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T20:54:23Z","timestamp":1729716863000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253523002282"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":249,"alternative-id":["S1566253523002282"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101912","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Toward domain adaptation with open-set target data: Review of theory and computer vision applications","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101912","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101912"}}