{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T01:42:12Z","timestamp":1720316532115},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62307029","U20A20229"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2023YFC3305601"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.eswa.2024.123419","type":"journal-article","created":{"date-parts":[[2024,2,7]],"date-time":"2024-02-07T01:52:51Z","timestamp":1707270771000},"page":"123419","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Pull together: Option-weighting-enhanced mixture-of-experts knowledge tracing"],"prefix":"10.1016","volume":"248","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2339-2118","authenticated-orcid":false,"given":"Tao","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7097-6007","authenticated-orcid":false,"given":"Xinjia","family":"Ou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3427-6884","authenticated-orcid":false,"given":"Huali","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7125-214X","authenticated-orcid":false,"given":"Shengze","family":"Hu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2273-9645","authenticated-orcid":false,"given":"Jing","family":"Geng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0005-9439-6548","authenticated-orcid":false,"given":"Zhuoran","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Zongkai","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2024.123419_b1","doi-asserted-by":"crossref","unstructured":"An, S., Kim, J., Kim, M., & Park, J. (2022). No Task Left Behind: Multi-Task Learning of Knowledge Tracing and Option Tracing for Better Student Assessment. In Proceedings of the AAAI conference on artificial intelligence, vol. 36, no. 4 (pp. 4424\u20134431).","DOI":"10.1609\/aaai.v36i4.20364"},{"key":"10.1016\/j.eswa.2024.123419_b2","series-title":"Intelligent tutoring systems: 9th international conference, ITS 2008, montreal, Canada, June 23-27, 2008 proceedings 9","first-page":"406","article-title":"More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing","author":"Baker","year":"2008"},{"issue":"9","key":"10.1016\/j.eswa.2024.123419_b3","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1046\/j.1365-2923.2002.01299.x","article-title":"Misinformation, partial knowledge and guessing in true\/false tests","volume":"36","author":"Burton","year":"2002","journal-title":"Medical Education"},{"key":"10.1016\/j.eswa.2024.123419_b4","article-title":"Modeling hint-taking behavior and knowledge state of students with multi-task learning.","author":"Chaudhry","year":"2018","journal-title":"International Educational Data Mining Society"},{"key":"10.1016\/j.eswa.2024.123419_b5","doi-asserted-by":"crossref","unstructured":"Choi, Y., Lee, Y., Cho, J., Baek, J., Kim, B., Cha, Y., et al. (2020). Towards an appropriate query, key, and value computation for knowledge tracing. In Proceedings of the seventh ACM conference on learning@ scale (pp. 341\u2013344).","DOI":"10.1145\/3386527.3405945"},{"key":"10.1016\/j.eswa.2024.123419_b6","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1007\/BF01099821","article-title":"Knowledge tracing: Modeling the acquisition of procedural knowledge","volume":"4","author":"Corbett","year":"1994","journal-title":"User Modeling and User-Adapted Interaction"},{"issue":"3","key":"10.1016\/j.eswa.2024.123419_b7","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1037\/h0030564","article-title":"ECS effects: Evidence supporting state-dependent learning in rats","volume":"74","author":"DeVietti","year":"1971","journal-title":"Journal of Comparative and Physiological Psychology"},{"key":"10.1016\/j.eswa.2024.123419_b8","series-title":"2017 IEEE international conference on robotics and automation","first-page":"2169","article-title":"Learning modular neural network policies for multi-task and multi-robot transfer","author":"Devin","year":"2017"},{"key":"10.1016\/j.eswa.2024.123419_b9","article-title":"Empirical option weights improve the validity of a multiple-choice knowledge test","author":"Diedenhofen","year":"2015","journal-title":"European Journal of Psychological Assessment"},{"issue":"3","key":"10.1016\/j.eswa.2024.123419_b10","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1111\/ijsa.12252","article-title":"Option weights should be determined empirically and not by experts when assessing knowledge with multiple-choice items","volume":"27","author":"Diedenhofen","year":"2019","journal-title":"International Journal of Selection and Assessment"},{"key":"10.1016\/j.eswa.2024.123419_b11","doi-asserted-by":"crossref","unstructured":"Fei, H., Zhang, J., Zhou, X., Zhao, J., Qi, X., & Li, P. (2021). GemNN: gating-enhanced multi-task neural networks with feature interaction learning for CTR prediction. In Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval (pp. 2166\u20132171).","DOI":"10.1145\/3404835.3463116"},{"issue":"1","key":"10.1016\/j.eswa.2024.123419_b12","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1207\/s15324818ame0201_5","article-title":"Partial-credit scoring methods for multiple-choice tests","volume":"2","author":"Frary","year":"1989","journal-title":"Applied Measurement in Education"},{"key":"10.1016\/j.eswa.2024.123419_b13","doi-asserted-by":"crossref","unstructured":"Ghosh, A., Heffernan, N., & Lan, A. S. (2020). Context-aware attentive knowledge tracing. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2330\u20132339).","DOI":"10.1145\/3394486.3403282"},{"key":"10.1016\/j.eswa.2024.123419_b14","series-title":"Artificial intelligence in education: 22nd international conference, AIED 2021, Utrecht, the Netherlands, June 14\u201318, 2021, proceedings, part I","first-page":"137","article-title":"Option tracing: Beyond correctness analysis in knowledge tracing","author":"Ghosh","year":"2021"},{"key":"10.1016\/j.eswa.2024.123419_b15","series-title":"2019 IEEE international conference on multimedia & expo workshops","first-page":"687","article-title":"Multi-modal representation learning for short video understanding and recommendation","author":"Guo","year":"2019"},{"issue":"3","key":"10.1016\/j.eswa.2024.123419_b16","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1207\/s15324818ame0303_2","article-title":"Effects of empirical option weighting on estimating domain scores and making pass\/fail decisions","volume":"3","author":"Haladyna","year":"1990","journal-title":"Applied Measurement in Education"},{"key":"10.1016\/j.eswa.2024.123419_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.122107","article-title":"Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective","volume":"238","author":"Huang","year":"2024","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.123419_b18","series-title":"GateNet: gating-enhanced deep network for click-through rate prediction","author":"Huang","year":"2020"},{"issue":"1","key":"10.1016\/j.eswa.2024.123419_b19","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1111\/j.2044-8317.1982.tb00642.x","article-title":"Some theories of performance in multiple choice tests, and their implications for variants of the task","volume":"35","author":"Hutchinson","year":"1982","journal-title":"British Journal of Mathematical and Statistical Psychology"},{"key":"10.1016\/j.eswa.2024.123419_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.lindif.2023.102274","article-title":"ChatGPT for good? On opportunities and challenges of large language models for education","volume":"103","author":"Kasneci","year":"2023","journal-title":"Learning and individual differences"},{"key":"10.1016\/j.eswa.2024.123419_b21","unstructured":"Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7482\u20137491)."},{"issue":"4","key":"10.1016\/j.eswa.2024.123419_b22","first-page":"99","article-title":"Guessing, partial knowledge, and misconceptions in multiple-choice tests","volume":"14","author":"Lau","year":"2011","journal-title":"Journal of Educational Technology & Society"},{"key":"10.1016\/j.eswa.2024.123419_b23","doi-asserted-by":"crossref","unstructured":"Lee, W., Chun, J., Lee, Y., Park, K., & Park, S. (2022). Contrastive learning for knowledge tracing. In Proceedings of the ACM web conference 2022 (pp. 2330\u20132338).","DOI":"10.1145\/3485447.3512105"},{"key":"10.1016\/j.eswa.2024.123419_b24","unstructured":"Lee, S., Kim, K. S., Shin, J., & Park, J. (2021). Tracing Knowledge for Tracing Dropouts: Multi-Task Training for Study Session Dropout Prediction. In EDM."},{"key":"10.1016\/j.eswa.2024.123419_b25","series-title":"Intelligent tutoring systems: 13th international conference, ITS 2016, zagreb, Croatia, June 7-10, 2016. proceedings 13","first-page":"208","article-title":"Intervention-bkt: incorporating instructional interventions into bayesian knowledge tracing","author":"Lin","year":"2016"},{"key":"10.1016\/j.eswa.2024.123419_b26","doi-asserted-by":"crossref","unstructured":"Liu, Z., Liu, Q., Chen, J., Huang, S., Gao, B., Luo, W., et al. (2023). Enhancing deep knowledge tracing with auxiliary tasks. In Proceedings of the ACM web conference 2023 (pp. 4178\u20134187).","DOI":"10.1145\/3543507.3583866"},{"key":"10.1016\/j.eswa.2024.123419_b27","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.ins.2022.02.044","article-title":"Ability boosted knowledge tracing","volume":"596","author":"Liu","year":"2022","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2024.123419_b28","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1111\/j.1745-3984.1975.tb01003.x","article-title":"Formula scoring and number-right scoring","author":"Lord","year":"1975","journal-title":"Journal of Educational Measurement"},{"key":"10.1016\/j.eswa.2024.123419_b29","doi-asserted-by":"crossref","unstructured":"Luo, Y., Zhou, H., Tu, W.-W., Chen, Y., Dai, W., & Yang, Q. (2020). Network on network for tabular data classification in real-world applications. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (pp. 2317\u20132326).","DOI":"10.1145\/3397271.3401437"},{"key":"10.1016\/j.eswa.2024.123419_b30","doi-asserted-by":"crossref","unstructured":"Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., & Chi, E. H. (2018). Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1930\u20131939).","DOI":"10.1145\/3219819.3220007"},{"key":"10.1016\/j.eswa.2024.123419_b31","doi-asserted-by":"crossref","unstructured":"Nakagawa, H., Iwasawa, Y., & Matsuo, Y. (2019). Graph-based knowledge tracing: modeling student proficiency using graph neural network. In IEEE\/WIC\/aCM international conference on web intelligence (pp. 156\u2013163).","DOI":"10.1145\/3350546.3352513"},{"issue":"1","key":"10.1016\/j.eswa.2024.123419_b32","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1037\/h0048023","article-title":"Statedependent or\u201d dissociated\u201d learning produced with pentobarbital","volume":"57","author":"Overton","year":"1964","journal-title":"Journal of Comparative and Physiological Psychology"},{"key":"10.1016\/j.eswa.2024.123419_b33","series-title":"A self-attentive model for knowledge tracing","author":"Pandey","year":"2019"},{"key":"10.1016\/j.eswa.2024.123419_b34","series-title":"User modeling, adaption and personalization: 19th international conference, UMAP 2011, Girona, Spain, July 11-15, 2011. proceedings 19","first-page":"243","article-title":"KT-IDEM: Introducing item difficulty to the knowledge tracing model","author":"Pardos","year":"2011"},{"key":"10.1016\/j.eswa.2024.123419_b35","article-title":"Deep knowledge tracing","volume":"28","author":"Piech","year":"2015","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2024.123419_b36","series-title":"2017 IEEE international conference on robotics and automation","first-page":"2161","article-title":"Learning to push by grasping: Using multiple tasks for effective learning","author":"Pinto","year":"2017"},{"key":"10.1016\/j.eswa.2024.123419_b37","series-title":"Omninet: A unified architecture for multi-modal multi-task learning","author":"Pramanik","year":"2019"},{"key":"10.1016\/j.eswa.2024.123419_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.compedu.2019.103701","article-title":"Challenges in the online component of blended learning: A systematic review","volume":"144","author":"Rasheed","year":"2020","journal-title":"Computers & Education"},{"key":"10.1016\/j.eswa.2024.123419_b39","doi-asserted-by":"crossref","unstructured":"Shen, S., Huang, Z., Liu, Q., Su, Y., Wang, S., & Chen, E. (2022). Assessing Student\u2019s Dynamic Knowledge State by Exploring the Question Difficulty Effect. In Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval (pp. 427\u2013437).","DOI":"10.1145\/3477495.3531939"},{"key":"10.1016\/j.eswa.2024.123419_b40","doi-asserted-by":"crossref","unstructured":"Shen, S., Liu, Q., Chen, E., Huang, Z., Huang, W., Yin, Y., et al. (2021). Learning process-consistent knowledge tracing. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1452\u20131460).","DOI":"10.1145\/3447548.3467237"},{"key":"10.1016\/j.eswa.2024.123419_b41","doi-asserted-by":"crossref","unstructured":"Shin, D., Shim, Y., Yu, H., Lee, S., Kim, B., & Choi, Y. (2021). Saint+: Integrating temporal features for ednet correctness prediction. In LAK21: 11th international learning analytics and knowledge conference (pp. 490\u2013496).","DOI":"10.1145\/3448139.3448188"},{"key":"10.1016\/j.eswa.2024.123419_b42","doi-asserted-by":"crossref","unstructured":"Su, Y., Liu, Q., Liu, Q., Huang, Z., Yin, Y., Chen, E., et al. (2018). Exercise-enhanced sequential modeling for student performance prediction. In Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1.","DOI":"10.1609\/aaai.v32i1.11864"},{"key":"10.1016\/j.eswa.2024.123419_b43","doi-asserted-by":"crossref","unstructured":"Tang, H., Liu, J., Zhao, M., & Gong, X. (2020). Progressive layered extraction (ple): A novel multi-task learning (mtl) model for personalized recommendations. In Proceedings of the 14th ACM conference on recommender systems (pp. 269\u2013278).","DOI":"10.1145\/3383313.3412236"},{"key":"10.1016\/j.eswa.2024.123419_b44","series-title":"Computer vision\u2013ECCV 2020: 16th European conference, Glasgow, UK, August 23\u201328, 2020, proceedings, part IV 16","first-page":"527","article-title":"Mti-net: Multi-scale task interaction networks for multi-task learning","author":"Vandenhende","year":"2020"},{"key":"10.1016\/j.eswa.2024.123419_b45","doi-asserted-by":"crossref","unstructured":"Wang, C., Ma, W., Zhang, M., Lv, C., Wan, F., Lin, H., et al. (2021). Temporal cross-effects in knowledge tracing. In Proceedings of the 14th ACM international conference on web search and data mining (pp. 517\u2013525).","DOI":"10.1145\/3437963.3441802"},{"key":"10.1016\/j.eswa.2024.123419_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116454","article-title":"Tracking knowledge proficiency of students with calibrated Q-matrix","volume":"192","author":"Wang","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.123419_b47","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.ins.2022.10.015","article-title":"SEEP: Semantic-enhanced question embeddings pre-training for improving knowledge tracing","volume":"614","author":"Wang","year":"2022","journal-title":"Information Sciences"},{"issue":"7","key":"10.1016\/j.eswa.2024.123419_b48","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1080\/00220671.1976.10884892","article-title":"The measurement of partial knowledge a comparison between two empirical option-weighting methods and rights-only scoring","volume":"69","author":"Watfrs","year":"1976","journal-title":"The Journal of Educational Research"},{"key":"10.1016\/j.eswa.2024.123419_b49","series-title":"Innovation abstracts","first-page":"n32","article-title":"The teaching of learning strategies","volume":"5","author":"Weinstein","year":"1983"},{"key":"10.1016\/j.eswa.2024.123419_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117681","article-title":"SGKT: Session graph-based knowledge tracing for student performance prediction","volume":"206","author":"Wu","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.123419_b51","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.ins.2022.12.075","article-title":"Self-supervised heterogeneous hypergraph network for knowledge tracing","volume":"624","author":"Wu","year":"2023","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2024.123419_b52","doi-asserted-by":"crossref","unstructured":"Xu, B., Huang, Z., Liu, J., Shen, S., Liu, Q., Chen, E., et al. (2023). Learning Behavior-oriented Knowledge Tracing. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining (pp. 2789\u20132800).","DOI":"10.1145\/3580305.3599407"},{"key":"10.1016\/j.eswa.2024.123419_b53","article-title":"Heterogeneous graph-based knowledge tracing with spatiotemporal evolution","author":"Yang","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.123419_b54","series-title":"Artificial intelligence in education: 16th international conference, AIED 2013, Memphis, TN, USA, July 9-13, 2013. proceedings 16","first-page":"171","article-title":"Individualized bayesian knowledge tracing models","author":"Yudelson","year":"2013"},{"key":"10.1016\/j.eswa.2024.123419_b55","doi-asserted-by":"crossref","unstructured":"Zhang, J., Shi, X., King, I., & Yeung, D.-Y. (2017). Dynamic key-value memory networks for knowledge tracing. In Proceedings of the 26th international conference on world wide web (pp. 765\u2013774).","DOI":"10.1145\/3038912.3052580"},{"issue":"12","key":"10.1016\/j.eswa.2024.123419_b56","doi-asserted-by":"crossref","first-page":"5586","DOI":"10.1109\/TKDE.2021.3070203","article-title":"A survey on multi-task learning","volume":"34","author":"Zhang","year":"2021","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2024.123419_b57","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.knosys.2018.03.001","article-title":"A three learning states Bayesian knowledge tracing model","volume":"148","author":"Zhang","year":"2018","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2024.123419_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119786","article-title":"Exploiting multiple question factors for knowledge tracing","volume":"223","author":"Zhao","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.123419_b59","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.110114","article-title":"Evolutionary machine learning builds smart education big data platform: Data-driven higher education","volume":"136","author":"Zheng","year":"2023","journal-title":"Applied Soft Computing"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424002847?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424002847?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,18]],"date-time":"2024-04-18T11:38:38Z","timestamp":1713440318000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424002847"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":59,"alternative-id":["S0957417424002847"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.123419","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pull together: Option-weighting-enhanced mixture-of-experts knowledge tracing","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.123419","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"123419"}}