iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ESWA.2023.119969
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T19:54:42Z","timestamp":1725911682959},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61836011"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["N2104001"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.eswa.2023.119969","type":"journal-article","created":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T15:44:44Z","timestamp":1679931884000},"page":"119969","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Automatic detection of schizophrenia based on spatial\u2013temporal feature mapping and LeViT with EEG signals"],"prefix":"10.1016","volume":"224","author":[{"given":"Beilin","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3131-7740","authenticated-orcid":false,"given":"Jiao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zhifen","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2023.119969_b1","doi-asserted-by":"crossref","first-page":"103","DOI":"10.3389\/fncom.2017.00103","article-title":"Classification of EEG signals based on pattern recognition approach","volume":"11","author":"Amin","year":"2017","journal-title":"Frontiers in Computational Neuroscience"},{"key":"10.1016\/j.eswa.2023.119969_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104434","article-title":"Automated EEG pathology detection based on different convolutional neural network models: Deep learning approach","volume":"133","author":"Bajpai","year":"2021","journal-title":"Computers in Biology and Medicine"},{"issue":"3","key":"10.1016\/j.eswa.2023.119969_b3","doi-asserted-by":"crossref","first-page":"R80","DOI":"10.1016\/j.cub.2018.11.052","article-title":"Electroencephalography","volume":"29","author":"Biasiucci","year":"2019","journal-title":"Current Biology"},{"key":"10.1016\/j.eswa.2023.119969_b4","series-title":"End to end learning for self-driving cars","author":"Bojarski","year":"2016"},{"issue":"5","key":"10.1016\/j.eswa.2023.119969_b5","doi-asserted-by":"crossref","first-page":"103","DOI":"10.3390\/fi13050103","article-title":"Deep learning-based classification of fine hand movements from low frequency EEG","volume":"13","author":"Bressan","year":"2021","journal-title":"Future Internet"},{"key":"10.1016\/j.eswa.2023.119969_b6","doi-asserted-by":"crossref","unstructured":"Buettner, R., Beil, D., Scholtz, S., & Djemai, A. (2020). Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings. In Proceedings of the 53rd Hawaii international conference on system sciences.","DOI":"10.24251\/HICSS.2020.393"},{"key":"10.1016\/j.eswa.2023.119969_b7","series-title":"European conference on computer vision","first-page":"213","article-title":"End-to-end object detection with transformers","author":"Carion","year":"2020"},{"issue":"2","key":"10.1016\/j.eswa.2023.119969_b8","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1152\/jn.00273.2019","article-title":"Cycle-by-cycle analysis of neural oscillations","volume":"122","author":"Cole","year":"2019","journal-title":"Journal of Neurophysiology"},{"issue":"8","key":"10.1016\/j.eswa.2023.119969_b9","doi-asserted-by":"crossref","first-page":"1384","DOI":"10.3390\/diagnostics11081384","article-title":"Transmed: Transformers advance multi-modal medical image classification","volume":"11","author":"Dai","year":"2021","journal-title":"Diagnostics"},{"key":"10.1016\/j.eswa.2023.119969_b10","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1016\/j.eswa.2018.08.031","article-title":"An end-to-end deep learning approach to MI-EEG signal classification for BCIs","volume":"114","author":"Dose","year":"2018","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119969_b11","series-title":"An image is worth 16x16 words: Transformers for image recognition at scale","author":"Dosovitskiy","year":"2020"},{"key":"10.1016\/j.eswa.2023.119969_b12","series-title":"Is attention better than matrix decomposition?","author":"Geng","year":"2021"},{"key":"10.1016\/j.eswa.2023.119969_b13","doi-asserted-by":"crossref","unstructured":"Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., J\u00e9gou, H., et al. (2021). LeViT: a Vision Transformer in ConvNet\u2019s Clothing for Faster Inference. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 12259\u201312269).","DOI":"10.1109\/ICCV48922.2021.01204"},{"key":"10.1016\/j.eswa.2023.119969_b14","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1016\/j.neuroimage.2012.12.051","article-title":"Time-frequency mixed-norm estimates: Sparse m\/EEG imaging with non-stationary source activations","volume":"70","author":"Gramfort","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.eswa.2023.119969_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116443","article-title":"Deep convolutional neural network based eye states classification using ear-EEG","volume":"192","author":"Han","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119969_b16","series-title":"MEG-EEG primer","author":"Hari","year":"2017"},{"issue":"5786","key":"10.1016\/j.eswa.2023.119969_b17","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.eswa.2023.119969_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2019.07.006","article-title":"Automated detection of schizophrenia using nonlinear signal processing methods","volume":"100","author":"Jahmunah","year":"2019","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.eswa.2023.119969_b19","series-title":"2021 Seventh international conference on bio signals, images, and instrumentation (ICBSII)","first-page":"1","article-title":"Automated detection of schizophrenia from brain MRI slices using optimized deep-features","author":"Kadry","year":"2021"},{"key":"10.1016\/j.eswa.2023.119969_b20","series-title":"Principles of neural science, vol. 4","author":"Kandel","year":"2000"},{"key":"10.1016\/j.eswa.2023.119969_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105288","article-title":"A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals","volume":"143","author":"Khademi","year":"2022","journal-title":"Computers in Biology and Medicine"},{"issue":"1","key":"10.1016\/j.eswa.2023.119969_b22","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/T-AFFC.2011.15","article-title":"Deap: A database for emotion analysis; using physiological signals","volume":"3","author":"Koelstra","year":"2011","journal-title":"IEEE Transactions on Affective Computing"},{"key":"10.1016\/j.eswa.2023.119969_b23","series-title":"EEG based continuous speech recognition using transformers","author":"Krishna","year":"2019"},{"issue":"3","key":"10.1016\/j.eswa.2023.119969_b24","doi-asserted-by":"crossref","first-page":"1124","DOI":"10.1016\/j.bbe.2020.05.008","article-title":"Schizophrenia detection using MultivariateEmpirical Mode Decomposition and entropy measures from multichannel EEG signal","volume":"40","author":"Krishnan","year":"2020","journal-title":"Biocybernetics and Biomedical Engineering"},{"key":"10.1016\/j.eswa.2023.119969_b25","doi-asserted-by":"crossref","unstructured":"Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 10012\u201310022).","DOI":"10.1109\/ICCV48922.2021.00986"},{"issue":"11","key":"10.1016\/j.eswa.2023.119969_b26","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1038\/3218","article-title":"The global burden of disease, 1990\u20132020","volume":"4","author":"Lopez","year":"1998","journal-title":"Nature Medicine"},{"issue":"1","key":"10.1016\/j.eswa.2023.119969_b27","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.bbr.2008.05.016","article-title":"Does stimulation of 5-HT1A receptors improve cognition in schizophrenia?","volume":"195","author":"Meltzer","year":"2008","journal-title":"Behavioural Brain Research"},{"issue":"14","key":"10.1016\/j.eswa.2023.119969_b28","doi-asserted-by":"crossref","first-page":"2870","DOI":"10.3390\/app9142870","article-title":"Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals","volume":"9","author":"Oh","year":"2019","journal-title":"Applied Sciences"},{"issue":"4","key":"10.1016\/j.eswa.2023.119969_b29","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1097\/NMD.0b013e3181d61748","article-title":"Verbal fluency in schizophrenia: does cognitive performance reflect the same underlying mechanisms in patients and healthy controls?","volume":"198","author":"Ojeda","year":"2010","journal-title":"The Journal of Nervous and Mental Disease"},{"issue":"11","key":"10.1016\/j.eswa.2023.119969_b30","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0188629","article-title":"Graph-based analysis of brain connectivity in schizophrenia","volume":"12","author":"Olejarczyk","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.eswa.2023.119969_b31","series-title":"Brain-computer interfaces 1: Foundations and methods","author":"Perronnet","year":"2016"},{"key":"10.1016\/j.eswa.2023.119969_b32","article-title":"Dynamic learning framework for epileptic seizure prediction using sparsity based EEG reconstruction with optimized CNN classifier","volume":"170","author":"Prathaban","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.eswa.2023.119969_b33","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1002\/wps.20050","article-title":"The DSM-5: Classification and criteria changes","volume":"12","author":"Regier","year":"2013","journal-title":"World Psychiatry"},{"issue":"5","key":"10.1016\/j.eswa.2023.119969_b34","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ab260c","article-title":"Deep learning-based electroencephalography analysis: a systematic review","volume":"16","author":"Roy","year":"2019","journal-title":"Journal of Neural Engineering"},{"issue":"5","key":"10.1016\/j.eswa.2023.119969_b35","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.0020141","article-title":"A systematic review of the prevalence of schizophrenia","volume":"2","author":"Saha","year":"2005","journal-title":"PLoS Medicine"},{"issue":"2","key":"10.1016\/j.eswa.2023.119969_b36","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1109\/TBME.2016.2558824","article-title":"A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia","volume":"64","author":"Santos-Mayo","year":"2016","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"11","key":"10.1016\/j.eswa.2023.119969_b37","doi-asserted-by":"crossref","first-page":"5391","DOI":"10.1002\/hbm.23730","article-title":"Deep learning with convolutional neural networks for EEG decoding and visualization","volume":"38","author":"Schirrmeister","year":"2017","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.eswa.2023.119969_b38","series-title":"Niedermeyer\u2019s electroencephalography: Basic principles, clinical applications, and related fields","author":"Schomer","year":"2012"},{"issue":"2","key":"10.1016\/j.eswa.2023.119969_b39","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1177\/0954411920966937","article-title":"Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients","volume":"235","author":"Singh","year":"2021","journal-title":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine"},{"key":"10.1016\/j.eswa.2023.119969_b40","series-title":"Transformer-based spatial-temporal feature learning for EEG decoding","author":"Song","year":"2021"},{"key":"10.1016\/j.eswa.2023.119969_b41","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.eswa.2019.01.080","article-title":"EEG-based user identification system using 1D-convolutional long short-term memory neural networks","volume":"125","author":"Sun","year":"2019","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119969_b42","series-title":"2021 IEEE 3rd global conference on life sciences and technologies (LifeTech)","first-page":"92","article-title":"Eeg classification with transformer-based models","author":"Sun","year":"2021"},{"issue":"2","key":"10.1016\/j.eswa.2023.119969_b43","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1177\/1550059411429531","article-title":"Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: a clinical case series","volume":"43","author":"Surmeli","year":"2012","journal-title":"Clinical EEG and Neuroscience"},{"key":"10.1016\/j.eswa.2023.119969_b44","first-page":"31","article-title":"Cognitive function in schizophrenic patients","volume":"57","author":"Tollefson","year":"1996","journal-title":"The Journal of Clinical Psychiatry"},{"key":"10.1016\/j.eswa.2023.119969_b45","series-title":"International conference on machine learning","first-page":"10347","article-title":"Training data-efficient image transformers & distillation through attention","author":"Touvron","year":"2021"},{"key":"10.1016\/j.eswa.2023.119969_b46","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.119969_b47","doi-asserted-by":"crossref","unstructured":"Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., et al. (2021). Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 568\u2013578).","DOI":"10.1109\/ICCV48922.2021.00061"},{"key":"10.1016\/j.eswa.2023.119969_b48","article-title":"Application of local configuration pattern for automated detection of schizophrenia with electroencephalogram signals","author":"WeiKoh","year":"2022","journal-title":"Expert Systems"},{"key":"10.1016\/j.eswa.2023.119969_b49","doi-asserted-by":"crossref","unstructured":"Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., et al. (2021). Cvt: Introducing convolutions to vision transformers. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 22\u201331).","DOI":"10.1109\/ICCV48922.2021.00009"},{"key":"10.1016\/j.eswa.2023.119969_b50","series-title":"Visual transformers: Token-based image representation and processing for computer vision","author":"Wu","year":"2020"},{"key":"10.1016\/j.eswa.2023.119969_b51","series-title":"2016 IEEE 18th international workshop on multimedia signal processing (MMSP)","first-page":"1","article-title":"Affective states classification using EEG and semi-supervised deep learning approaches","author":"Xu","year":"2016"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423004712?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423004712?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:32:44Z","timestamp":1714545164000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423004712"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":51,"alternative-id":["S0957417423004712"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119969","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automatic detection of schizophrenia based on spatial\u2013temporal feature mapping and LeViT with EEG signals","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119969","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119969"}}