iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ESWA.2021.115077
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T01:22:51Z","timestamp":1720315371667},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003992","name":"Instituto Federal do Esp\u00edrito Santo","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003992","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007065","name":"NVIDIA Corp","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100007065","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.eswa.2021.115077","type":"journal-article","created":{"date-parts":[[2021,4,22]],"date-time":"2021-04-22T23:06:13Z","timestamp":1619132773000},"page":"115077","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["What is the best grid-map for self-driving cars localization? An evaluation under diverse types of illumination, traffic, and environment"],"prefix":"10.1016","volume":"179","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2951-9207","authenticated-orcid":false,"given":"Filipe","family":"Mutz","sequence":"first","affiliation":[]},{"given":"Thiago","family":"Oliveira-Santos","sequence":"additional","affiliation":[]},{"given":"Avelino","family":"Forechi","sequence":"additional","affiliation":[]},{"given":"Karin S.","family":"Komati","sequence":"additional","affiliation":[]},{"given":"Claudine","family":"Badue","sequence":"additional","affiliation":[]},{"given":"Felipe M.G.","family":"Fran\u00e7a","sequence":"additional","affiliation":[]},{"given":"Alberto F.","family":"De Souza","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2021.115077_b0005","unstructured":"Amaral-Silva, H. T., Murta-Jr, L. O., de Azevedo-Marques, P. M., Wichert-Ana, L. V., & Studholme, C. (2016). Validation of Tsallis Entropy. Fonte: Inter-Modality Neuroimage Registration: arXiv preprint arXiv:1611.01730."},{"key":"10.1016\/j.eswa.2021.115077_b0010","series-title":"A measure of overall statistical dependence based on the entropy concept","author":"Astola","year":"1983"},{"key":"10.1016\/j.eswa.2021.115077_b0015","series-title":"Semantic Localization Via the Matrix Permanent","author":"Atanasov","year":"2014"},{"key":"10.1016\/j.eswa.2021.115077_b0020","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1177\/0278364915596589","article-title":"Localization from semantic observations via the matrix permanent","author":"Atanasov","year":"2016","journal-title":"The International Journal of Robotics Research"},{"key":"10.1016\/j.eswa.2021.115077_b0025","series-title":"Expert Systems with Applications","article-title":"Self-driving cars: A survey","author":"Badue","year":"2020"},{"key":"10.1016\/j.eswa.2021.115077_b0030","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1109\/MRA.2006.1678144","article-title":"Simultaneous localization and mapping: Part II","author":"Bailey","year":"2006","journal-title":"IEEE Robotics & Automation Magazine"},{"key":"10.1016\/j.eswa.2021.115077_b0035","doi-asserted-by":"crossref","unstructured":"Bardera, A., Feixas, M., Boada, I., & Sbert, M. (2006). High-dimensional normalized mutual information for image registration using random lines. International Workshop on Biomedical Image Registration (pp. 264-271). Berlin: Springer.","DOI":"10.1007\/11784012_32"},{"key":"10.1016\/j.eswa.2021.115077_b0040","series-title":"Robust dense mapping for large-scale dynamic environments","first-page":"7510","author":"B\u00e2rsan","year":"2018"},{"key":"10.1016\/j.eswa.2021.115077_b0045","series-title":"Direct Geometrical Map to Low-Level Grid Map Registration for Robust Online Localization","first-page":"2223","author":"Berger","year":"2018"},{"key":"10.1016\/j.eswa.2021.115077_b0050","first-page":"194","article-title":"Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving","author":"Bresson","year":"2017","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2021.115077_b0055","series-title":"Normalized measures of mutual information with general definitions of entropy for multimodal image registration. International Workshop on Biomedical Image Registration","first-page":"258","author":"Cahill","year":"2010"},{"key":"10.1016\/j.eswa.2021.115077_b0060","series-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","first-page":"801","author":"Chen","year":"2018"},{"key":"10.1016\/j.eswa.2021.115077_b0065","doi-asserted-by":"crossref","unstructured":"J. Clemens T. Kluth T. Reineking (Dec de, \u03b2-SLAM: Simultaneous localization and grid mapping with beta distributions Inf. Fusion 2019 62 75.","DOI":"10.1016\/j.inffus.2018.11.005"},{"key":"10.1016\/j.eswa.2021.115077_b0070","series-title":"The cityscapes dataset for semantic urban scene understanding","first-page":"3213","author":"Cordts","year":"2016"},{"key":"10.1016\/j.eswa.2021.115077_b0075","series-title":"Robotics, vision and control: Fundamental algorithms In MATLAB","author":"Corke","year":"2017"},{"key":"10.1016\/j.eswa.2021.115077_b0080","series-title":"Learning globally consistent maps by relaxation","first-page":"3841","author":"Duckett","year":"2000"},{"key":"10.1016\/j.eswa.2021.115077_b0085","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1109\/MRA.2006.1638022","article-title":"Simultaneous localization and mapping: Part I","author":"Durrant-Whyte","year":"2006","journal-title":"IEEE robotics & automation magazine"},{"key":"10.1016\/j.eswa.2021.115077_b0090","unstructured":"Frese, U., & Hirzinger, G. (2001). Simultaneous localization and mapping-a discussion. IJCAI Workshop on Reasoning with Uncertainty in Robotics (pp. 17-26). Seattle: International Joint Conferences on Artificial Intelligence."},{"key":"10.1016\/j.eswa.2021.115077_b0095","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1177\/0278364913491297","article-title":"Vision meets robotics: The KITTI dataset","author":"Geiger","year":"2013","journal-title":"The International Journal of Robotics Research"},{"key":"10.1016\/j.eswa.2021.115077_b0100","series-title":"Elastic correction of dead-reckoning errors in map building","first-page":"905","author":"Golfarelli","year":"1998"},{"key":"10.1016\/j.eswa.2021.115077_b0105","series-title":"g2o: a general framework for (hyper) graph optimization","first-page":"9","author":"Grisetti","year":"2011"},{"key":"10.1016\/j.eswa.2021.115077_b0110","series-title":"Removing Movable Objects from Grid Maps of Self-Driving Cars Using Deep Neural Networks","first-page":"1","author":"Guidolini","year":"2019"},{"key":"10.1016\/j.eswa.2021.115077_b0115","series-title":"Multiple view geometry in computer vision","author":"Hartley","year":"2003"},{"key":"10.1016\/j.eswa.2021.115077_b0120","unstructured":"Here. (03 de April de 2021). Map Content. Fonte: Here Maps: https:\/\/www.here.com\/platform\/mapping."},{"key":"10.1016\/j.eswa.2021.115077_b0125","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1007\/s10514-012-9321-0","article-title":"OctoMap: An efficient probabilistic 3D mapping framework based on octrees","author":"Hornung","year":"2013","journal-title":"Autonomous robots"},{"key":"10.1016\/j.eswa.2021.115077_b0130","doi-asserted-by":"crossref","first-page":"1036","DOI":"10.1109\/TRO.2007.903811","article-title":"Convergence and consistency analysis for extended Kalman filter based SLAM","author":"Huang","year":"2007","journal-title":"IEEE Transactions on robotics"},{"key":"10.1016\/j.eswa.2021.115077_b0135","series-title":"Large-scale map-making. AAAI","first-page":"457","author":"Konolige","year":"2004"},{"key":"10.1016\/j.eswa.2021.115077_b0140","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.robot.2014.12.006","article-title":"Semantic mapping for mobile robotics tasks: A survey","author":"Kostavelis","year":"2015","journal-title":"Robotics and Autonomous Systems"},{"key":"10.1016\/j.eswa.2021.115077_b0145","series-title":"Robust vehicle localization in urban environments using probabilistic maps","first-page":"4372","author":"Levinson","year":"2010"},{"key":"10.1016\/j.eswa.2021.115077_b0150","series-title":"Robotics: science and systems","first-page":"1","article-title":"Map-based precision vehicle localization in urban environments","author":"Levinson","year":"2007"},{"key":"10.1016\/j.eswa.2021.115077_b0155","first-page":"1","article-title":"High Definition Map for Automated Driving: Overview and Analysis","author":"Liu","year":"2019","journal-title":"The Journal of Navigation"},{"key":"10.1016\/j.eswa.2021.115077_b0160","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1023\/A:1008854305733","article-title":"Globally consistent range scan alignment for environment mapping","author":"Lu","year":"1997","journal-title":"Autonomous robots"},{"key":"10.1016\/j.eswa.2021.115077_b0165","series-title":"L3-Net: Towards Learning Based LiDAR Localization for Autonomous Driving","first-page":"6382","author":"Lu","year":"2019"},{"key":"10.1016\/j.eswa.2021.115077_b0170","series-title":"Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle Localization","first-page":"5304","author":"Ma","year":"2019"},{"key":"10.1016\/j.eswa.2021.115077_b0175","series-title":"Stochastic models, estimation, and control","author":"Maybeck","year":"1982"},{"key":"10.1016\/j.eswa.2021.115077_b0180","series-title":"Semanticfusion: Dense 3d semantic mapping with convolutional neural networks","first-page":"4628","author":"McCormac","year":"2017"},{"key":"10.1016\/j.eswa.2021.115077_b0185","unstructured":"Montemerlo, M., & Thrun, S. (2007). Fastslam 2.0. FastSLAM: A scalable method for the simultaneous localization and mapping problem. Robotics, pp. 63\u201390."},{"key":"10.1016\/j.eswa.2021.115077_b0190","series-title":"Perspectives on standardization in mobile robot programming: The Carnegie Mellon navigation (CARMEN) toolkit","first-page":"2436","author":"Montemerlo","year":"2003"},{"key":"10.1016\/j.eswa.2021.115077_b0195","series-title":"Fastslam: A factored solution to the simultaneous localization and mapping problem","first-page":"593","author":"Montemerlo","year":"2002"},{"key":"10.1016\/j.eswa.2021.115077_b0200","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/j.eswa.2015.10.045","article-title":"Large-scale Mapping in Complex Field Scenarios using an Autonomous Car","author":"Mutz","year":"2016","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.115077_b0205","unstructured":"National Highway Traffic Safety Administration. (2019, 05 17). Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. Retrieved from National Highway Traffic Safety Administration: https:\/\/crashstats.nhtsa.dot.gov\/Api\/Public\/ViewPublication\/812115."},{"key":"10.1016\/j.eswa.2021.115077_b0210","series-title":"Precise Localization in High-Definition Road Maps for Urban Regions","first-page":"2167","author":"Poggenhans","year":"2018"},{"key":"10.1016\/j.eswa.2021.115077_b0215","unstructured":"Rosenbaum, D., Besse, F., Viola, F., Rezende, D. J., & Eslami, S. M. (2018). Learning models for visual 3d localization with implicit mapping. arXiv preprint arXiv:1807.03149."},{"key":"10.1016\/j.eswa.2021.115077_b0220","unstructured":"SAE International. (01 de 01 de 2016). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Warrendale: SAE International. Fonte: SAE international."},{"key":"10.1016\/j.eswa.2021.115077_b0225","unstructured":"Securing America\u2019s Future Energy. (17 de 05 de 2019). America\u2019s Workforce and the Self-Driving Future: Realizing Productivity Gains and Spurring Economic Growth. Fonte: Securing America\u2019s Future Energy: https:\/\/avworkforce.secureenergy.org\/wp-content\/uploads\/2018\/06\/SAFE_AV_Policy_Brief.pdf."},{"key":"10.1016\/j.eswa.2021.115077_b0230","doi-asserted-by":"crossref","unstructured":"A. Segal D. Haehnel S. Thrun Generalized-icp. Robotics: Science and systems 2009 435.","DOI":"10.15607\/RSS.2009.V.021"},{"key":"10.1016\/j.eswa.2021.115077_b0235","series-title":"Automatic dense visual semantic mapping from street-level imagery","first-page":"857","author":"Sengupta","year":"2012"},{"key":"10.1016\/j.eswa.2021.115077_b0240","series-title":"The Iterated Sigma Point Kalman Filter with Applications to Long Range Stereo","first-page":"235","author":"Sibley","year":"2006"},{"key":"10.1016\/j.eswa.2021.115077_b0245","series-title":"Introduction to autonomous mobile robots","author":"Siegwart","year":"2011"},{"key":"10.1016\/j.eswa.2021.115077_b0250","doi-asserted-by":"crossref","DOI":"10.3390\/s18093118","article-title":"Entropy correlation and its impacts on data aggregation in a wireless sensor network","author":"Thanh","year":"2018","journal-title":"Sensors."},{"key":"10.1016\/j.eswa.2021.115077_b0260","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1177\/0278364906065387","article-title":"The graph SLAM algorithm with applications to large-scale mapping of urban structures","author":"Thrun","year":"2006","journal-title":"The International Journal of Robotics Research"},{"key":"10.1016\/j.eswa.2021.115077_b0265","series-title":"Probabilistic robotics","author":"Thrun","year":"2005"},{"key":"10.1016\/j.eswa.2021.115077_b0270","unstructured":"TomTom. (03 de April de 2021). Extending the vision of automated vehicles with HD Maps and ADASIS. Fonte: TomTom HD Map: https:\/\/download.tomtom.com\/open\/banners\/Elektrobit_TomTom_white-paper.pdf."},{"key":"10.1016\/j.eswa.2021.115077_b0275","unstructured":"TomTom. (03 de April de 2021). TomTom HD Map. Fonte: HD Map with RoadDNA: High definition map with sensor-agnostic localization: https:\/\/download.tomtom.com\/open\/banners\/HD-Map-with-RoadDNA-Product-Sheet.pdf."},{"key":"10.1016\/j.eswa.2021.115077_b0280","unstructured":"United States Department of Labor. (17 de 05 de 2019). Occupational Outlook Handbook. Fonte: Bureau of Labor Statistics: https:\/\/www.bls.gov\/ooh\/."},{"key":"10.1016\/j.eswa.2021.115077_b0285","series-title":"Re-emission and satellite aerial maps applied to vehicle localization on urban environments","first-page":"4285","author":"Veronese","year":"2015"},{"key":"10.1016\/j.eswa.2021.115077_b0290","series-title":"Rio de Janeiro","first-page":"520","article-title":"A light-weight yet accurate localization system for autonomous cars in large-scale and complex environments","author":"Veronese","year":"2016"},{"key":"10.1016\/j.eswa.2021.115077_b0295","series-title":"Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction","first-page":"75","author":"Vineet","year":"2015"},{"key":"10.1016\/j.eswa.2021.115077_b0300","series-title":"The unscented Kalman filter for nonlinear estimation","first-page":"153","author":"Wan","year":"2000"},{"key":"10.1016\/j.eswa.2021.115077_b0310","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1177\/0278364917696568","article-title":"Robust LIDAR localization using multiresolution Gaussian mixture maps for autonomous driving","author":"Wolcott","year":"2017","journal-title":"The International Journal of Robotics Research"},{"key":"10.1016\/j.eswa.2021.115077_b0315","first-page":"119","article-title":"Wider or Deeper: Revisiting the ResNet Model for Visual Recognition","author":"Wu","year":"2019","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2021.115077_b0320","doi-asserted-by":"crossref","unstructured":"S. Yang Y. Huang S. Scherer Semantic 3d occupancy mapping through efficient high order crfs Fonte: arXiv 2017 https:\/\/arxiv.org\/abs\/1707.07388.","DOI":"10.1109\/IROS.2017.8202212"},{"key":"10.1016\/j.eswa.2021.115077_b0325","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1007\/s11370-016-0201-x","article-title":"Building 3d semantic maps for mobile robots using rgb-d camera","author":"Zhao","year":"2016","journal-title":"Intelligent Service Robotics"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421005182?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421005182?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,12]],"date-time":"2023-03-12T07:36:29Z","timestamp":1678606589000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421005182"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":63,"alternative-id":["S0957417421005182"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.eswa.2021.115077","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"What is the best grid-map for self-driving cars localization? An evaluation under diverse types of illumination, traffic, and environment","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.115077","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"115077"}}