iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ESWA.2021.114837
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,28]],"date-time":"2024-07-28T11:20:21Z","timestamp":1722165621231},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["DP180100718","DP200102961","IC180100030"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.eswa.2021.114837","type":"journal-article","created":{"date-parts":[[2021,3,12]],"date-time":"2021-03-12T03:22:45Z","timestamp":1615519365000},"page":"114837","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["On using the modularity of recurrence network communities to detect change-point behaviour"],"prefix":"10.1016","volume":"176","author":[{"given":"David M.","family":"Walker","sequence":"first","affiliation":[]},{"given":"Ayham","family":"Zaitouny","sequence":"additional","affiliation":[]},{"given":"D\u00e9bora C.","family":"Corr\u00eaa","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2021.114837_b0005","series-title":"Analysis of observed chaotic data","author":"Abarbanel","year":"1996"},{"key":"10.1016\/j.eswa.2021.114837_b0010","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1111\/1368-423X.00102","article-title":"Critical values for multiple structural change tests","volume":"6","author":"Bai","year":"2003","journal-title":"Econometrics Journal"},{"key":"10.1016\/j.eswa.2021.114837_b0015","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1126\/science.aad0299","article-title":"Complexity theory and financial regulation","volume":"351","author":"Battiston","year":"2016","journal-title":"Science"},{"key":"10.1016\/j.eswa.2021.114837_b0020","series-title":"Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM","article-title":"Learning from time-changing data with adaptive windowing","author":"Bifet","year":"2007"},{"key":"10.1016\/j.eswa.2021.114837_b0025","first-page":"1465","article-title":"Yet another chaotic attractor","volume":"9","author":"Chen","year":"1990","journal-title":"International Journal of Bifurcation and Chaos in Applied Sciences and Engineering"},{"key":"10.1016\/j.eswa.2021.114837_b0030","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.70.066111","article-title":"Finding community structure in very large networks","volume":"70","author":"Clauset","year":"2004","journal-title":"Physical Review E"},{"key":"10.1016\/j.eswa.2021.114837_b0035","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.eswa.2016.04.026","article-title":"Using dynamical systems tools to detect concept drift in data streams","volume":"60","author":"da Costa","year":"2016","journal-title":"Expert Systems With Applications"},{"key":"10.1016\/j.eswa.2021.114837_b0040","series-title":"Bayesian methods for nonlinear classification and regression","author":"Denison","year":"2002"},{"issue":"1","key":"10.1016\/j.eswa.2021.114837_b0045","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1140\/epjst\/e2009-01098-2","article-title":"Complex networks in climate dynamics","volume":"174","author":"Donges","year":"2009","journal-title":"The European Physical Journal Special Topics"},{"key":"10.1016\/j.eswa.2021.114837_b0050","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1142\/S0218127411029021","article-title":"Recurrence-based time series analysis by means of complex network methods","volume":"21","author":"Donner","year":"2011","journal-title":"International Journal of Bifurcation and Chaos"},{"issue":"3","key":"10.1016\/j.eswa.2021.114837_b0055","doi-asserted-by":"crossref","DOI":"10.1088\/1367-2630\/12\/3\/033025","article-title":"Recurrence networks\u2013a novel paradigm for nonlinear time series analysis","volume":"12","author":"Donner","year":"2010","journal-title":"New Journal of Physics"},{"key":"10.1016\/j.eswa.2021.114837_b0060","doi-asserted-by":"crossref","first-page":"973","DOI":"10.1209\/0295-5075\/4\/9\/004","article-title":"Recurrence plots of dynamical systems","volume":"4","author":"Eckmann","year":"1987","journal-title":"Europhysics Letters"},{"key":"10.1016\/j.eswa.2021.114837_b0065","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.physrep.2009.11.002","article-title":"Community detection in graphs","volume":"486","author":"Fortunato","year":"2010","journal-title":"Physics Reports"},{"key":"10.1016\/j.eswa.2021.114837_b0070","series-title":"Knowledge discovery from data streams","author":"Gama","year":"2010"},{"key":"10.1016\/j.eswa.2021.114837_b0075","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/0375-9601(95)00398-M","article-title":"Creating periodic orbits in chaotic systems","volume":"203","author":"Glass","year":"1995","journal-title":"Physics Letters A"},{"issue":"4","key":"10.1016\/j.eswa.2021.114837_b0080","doi-asserted-by":"crossref","first-page":"332","DOI":"10.3390\/vibration2040021","article-title":"A brief introduction to nonlinear time series analysis and recurrence plots","volume":"2","author":"Goswami","year":"2019","journal-title":"Vibration"},{"issue":"1","key":"10.1016\/j.eswa.2021.114837_b0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-017-02456-6","article-title":"Abrupt transitions in time series with uncertainties","volume":"9","author":"Goswami","year":"2018","journal-title":"Nature Communications"},{"key":"10.1016\/j.eswa.2021.114837_b0090","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1063\/1.166424","article-title":"Practical implementation of nonlinear time series methods: The tisean package","volume":"9","author":"Hegger","year":"1999","journal-title":"CHAOS"},{"key":"10.1016\/j.eswa.2021.114837_b0095","series-title":"Nonlinear Time Series Analysis","author":"Kantz","year":"2004"},{"key":"10.1016\/j.eswa.2021.114837_b0100","doi-asserted-by":"crossref","first-page":"585","DOI":"10.3389\/fnins.2019.00585","article-title":"Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review","volume":"13","author":"Karwowski","year":"2019","journal-title":"frontiers in Neuroscience"},{"key":"10.1016\/j.eswa.2021.114837_b0105","first-page":"1","article-title":"Damage detection by recurrence and entropy methods on the basis of time series measured during composite milling","author":"Kecik","year":"2020","journal-title":"The International Journal of Advanced Manufacturing Technology"},{"issue":"6","key":"10.1016\/j.eswa.2021.114837_b0110","doi-asserted-by":"crossref","first-page":"3403","DOI":"10.1103\/PhysRevA.45.3403","article-title":"Determining embedding dimension for phase-space reconstruction using a geometrical construction","volume":"45","author":"Kennel","year":"1992","journal-title":"Physical Review A"},{"key":"10.1016\/j.eswa.2021.114837_b0115","doi-asserted-by":"crossref","unstructured":"Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. In VLDB, vol. 4, (pp. 180\u2013191). Toronto, Canada.","DOI":"10.1016\/B978-012088469-8.50019-X"},{"key":"10.1016\/j.eswa.2021.114837_b0120","doi-asserted-by":"crossref","DOI":"10.1063\/1.4959537","article-title":"Using ordinal partition transition networks to analyze ecg data","volume":"26","author":"Kulp","year":"2016","journal-title":"Chaos"},{"issue":"1","key":"10.1016\/j.eswa.2021.114837_b0125","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.physa.2009.08.035","article-title":"Complex network structure of musical compositions: Algorithmic generation of appealing music","volume":"389","author":"Liu","year":"2010","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"key":"10.1016\/j.eswa.2021.114837_b0130","article-title":"Recurrence quantification analysis of dynamic brain networks","author":"Lopes","year":"2020","journal-title":"European Journal of Neuroscience"},{"issue":"1","key":"10.1016\/j.eswa.2021.114837_b0135","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s40747-019-00124-4","article-title":"Data-driven decision support under concept drift in streamed big data","volume":"6","author":"Lu","year":"2020","journal-title":"Complex & Intelligent Systems"},{"key":"10.1016\/j.eswa.2021.114837_b0140","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.3390\/e17031253","article-title":"Entropic measures of complexity of short-term dynamics of nocturnal heartbeats in an aging population","volume":"17","author":"Makowiec","year":"2015","journal-title":"Entropy"},{"key":"10.1016\/j.eswa.2021.114837_b0145","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.physrep.2006.11.001","article-title":"Recurrence plots for the analysis of complex systems","volume":"438","author":"Marwan","year":"2007","journal-title":"Physics Reports"},{"key":"10.1016\/j.eswa.2021.114837_b0150","doi-asserted-by":"crossref","first-page":"51269","DOI":"10.1109\/ACCESS.2018.2869129","article-title":"Cluster survival model of concept drift in load profile data","volume":"6","author":"Masud","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2021.114837_b0155","doi-asserted-by":"crossref","first-page":"20160292","DOI":"10.1098\/rsta.2016.0292","article-title":"Multiscale ordinal network analysis of human cardiac dynamics","volume":"375","author":"McCullough","year":"2017","journal-title":"Philosophical Transactions of the Royal Society A"},{"key":"10.1016\/j.eswa.2021.114837_b0160","series-title":"Handbook of Computer Networks and Cyber Security","first-page":"653","article-title":"Computational techniques for real-time credit card fraud detection","author":"Mittal","year":"2020"},{"issue":"8","key":"10.1016\/j.eswa.2021.114837_b0165","doi-asserted-by":"crossref","DOI":"10.1063\/1.5024814","article-title":"Is Bach\u2019s brain a Markov chain? recurrence quantification to assess markov order for short, symbolic, musical compositions","volume":"28","author":"Moore","year":"2018","journal-title":"Chaos: An Interdisciplinary Journal of Nonlinear Science"},{"key":"10.1016\/j.eswa.2021.114837_b0170","doi-asserted-by":"crossref","first-page":"4704","DOI":"10.1016\/j.physa.2012.05.039","article-title":"Networks with time structure from time series","volume":"391","author":"Nakamura","year":"2012","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"key":"10.1016\/j.eswa.2021.114837_b0175","series-title":"Networks","author":"Newman","year":"2018"},{"key":"10.1016\/j.eswa.2021.114837_b0180","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.74.036104","article-title":"Finding community structure in networks using the eigenvectors of matrices","volume":"74","author":"Newman","year":"2006","journal-title":"Physical Review E"},{"key":"10.1016\/j.eswa.2021.114837_b0185","doi-asserted-by":"crossref","first-page":"8577","DOI":"10.1073\/pnas.0601602103","article-title":"From the cover: Modularity and community structure in networks","volume":"103","author":"Newman","year":"2006","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"key":"10.1016\/j.eswa.2021.114837_b0190","article-title":"Finding and evaluating community structure in networks","volume":"69","author":"Newman","year":"2004","journal-title":"Physical Review E"},{"key":"10.1016\/j.eswa.2021.114837_b0195","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1093\/biomet\/41.1-2.100","article-title":"Continuous inspection schemes","volume":"41","author":"Page","year":"1954","journal-title":"Biometrika"},{"key":"10.1016\/j.eswa.2021.114837_b0200","doi-asserted-by":"crossref","first-page":"19","DOI":"10.3389\/fncom.2019.00019","article-title":"Bistable firing pattern in a neural network model","volume":"13","author":"Protachevicz","year":"2019","journal-title":"Frontiers in Computational Neuroscience"},{"issue":"4\u20135","key":"10.1016\/j.eswa.2021.114837_b0205","doi-asserted-by":"crossref","first-page":"1066","DOI":"10.1016\/j.jsv.2005.03.007","article-title":"Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics","volume":"289","author":"Qiu","year":"2006","journal-title":"Journal of Sound and Vibration"},{"key":"10.1016\/j.eswa.2021.114837_b0210","doi-asserted-by":"crossref","unstructured":"Rapp, P. E., Darmon, D. M., & Cellucci, C. J. (2013). Hierarchical transition chronometries in the human central nervous system. In 2013 International Symposium on Nonlinear Theory and its Applications, (pp. 286\u2013289). NOLTA2013.","DOI":"10.15248\/proc.2.286"},{"issue":"2","key":"10.1016\/j.eswa.2021.114837_b0215","doi-asserted-by":"crossref","DOI":"10.1063\/1.3117151","article-title":"Recurrences determine the dynamics","volume":"19","author":"Robinson","year":"2009","journal-title":"Chaos: An Interdisciplinary Journal of Nonlinear Science"},{"key":"10.1016\/j.eswa.2021.114837_b0220","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1038\/nature08227","article-title":"Early-warning signals for critical transitions","volume":"461","author":"Scheffer","year":"2009","journal-title":"Nature"},{"key":"10.1016\/j.eswa.2021.114837_b0225","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1126\/science.1225244","article-title":"Anticipating critical transitions","volume":"338","author":"Scheffer","year":"2012","journal-title":"Science"},{"key":"10.1016\/j.eswa.2021.114837_b0230","series-title":"8th IFAC Symposium on Biological and Medical Systems. IFAC","article-title":"Online evaluation of a changes detection algorithm for depth of anesthesia signals","author":"Sebastiao","year":"2012"},{"key":"10.1016\/j.eswa.2021.114837_b0235","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.93.032137","article-title":"Towards a critical transition theory under different temporal scales and noise strengths","volume":"93","author":"Shi","year":"2016","journal-title":"Physical Review E"},{"issue":"27","key":"10.1016\/j.eswa.2021.114837_b0240","first-page":"355","article-title":"Automatic identification and recording of cardiac arrhythmia","volume":"2000","author":"Small","year":"2000","journal-title":"Computers in Cardiology"},{"issue":"4","key":"10.1016\/j.eswa.2021.114837_b0245","doi-asserted-by":"crossref","first-page":"2483","DOI":"10.1007\/s11071-019-05143-x","article-title":"Complex machine dynamics: systematic recurrence quantification analysis of disk brake vibration data","volume":"97","author":"Stender","year":"2019","journal-title":"Nonlinear Dynamics"},{"issue":"1","key":"10.1016\/j.eswa.2021.114837_b0250","doi-asserted-by":"crossref","first-page":"25","DOI":"10.3390\/e21010025","article-title":"Incremental market behavior classification in presence of recurring concepts","volume":"21","author":"Su\u00e1rez-Cetrulo","year":"2019","journal-title":"Entropy"},{"key":"10.1016\/j.eswa.2021.114837_b0255","series-title":"Methods and applications of signal processing in seismic network operations","author":"Takanami","year":"2002"},{"key":"10.1016\/j.eswa.2021.114837_b0260","doi-asserted-by":"crossref","unstructured":"Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, (pp. 366\u2013381). Springer.","DOI":"10.1007\/BFb0091924"},{"issue":"2","key":"10.1016\/j.eswa.2021.114837_b0265","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TR.2012.2194177","article-title":"A data-driven failure prognostics method based on mixture of gaussians hidden markov models","volume":"61","author":"Tobon-Mejia","year":"2012","journal-title":"IEEE Transactions on Reliability"},{"key":"10.1016\/j.eswa.2021.114837_b0270","doi-asserted-by":"crossref","DOI":"10.1063\/1.5001955","article-title":"On system behaviour using complex networks of a compression algorithm","volume":"28","author":"Walker","year":"2018","journal-title":"Chaos"},{"key":"10.1016\/j.eswa.2021.114837_b0275","doi-asserted-by":"crossref","first-page":"18005","DOI":"10.1209\/0295-5075\/107\/18005","article-title":"Uncovering temporal transitions and self-organization during slow aging of dense granular media in the absence of shear bands","volume":"107","author":"Walker","year":"2014","journal-title":"Europhysics Letters"},{"key":"10.1016\/j.eswa.2021.114837_b0280","doi-asserted-by":"crossref","first-page":"29259","DOI":"10.1038\/srep29259","article-title":"Suppressing disease spreading by using information diffusion on multiplex networks","volume":"6","author":"Wang","year":"2016","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2021.114837_b0285","doi-asserted-by":"crossref","DOI":"10.1016\/j.future.2020.05.035","article-title":"Improved long short-term memory based anomaly detection with concept drift adaptive method for supporting iot services","author":"Xu","year":"2020","journal-title":"Future Generation Computer Systems"},{"issue":"50","key":"10.1016\/j.eswa.2021.114837_b0290","doi-asserted-by":"crossref","first-page":"19601","DOI":"10.1073\/pnas.0806082105","article-title":"Superfamily phenomena and motifs of networks induced from time series","volume":"105","author":"Xu","year":"2008","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"10.1016\/j.eswa.2021.114837_b0295","doi-asserted-by":"crossref","DOI":"10.1016\/j.cageo.2019.104362","article-title":"Fast automatic detection of geological boundaries from multivariate log data using recurrence","volume":"135","author":"Zaitouny","year":"2020","journal-title":"Computers & Geosciences"},{"key":"10.1016\/j.eswa.2021.114837_b0300","doi-asserted-by":"crossref","DOI":"10.1063\/1.5109925","article-title":"Quadrant scan for multi-scale transition detection","volume":"29","author":"Zaitouny","year":"2019","journal-title":"Chaos"},{"key":"10.1016\/j.eswa.2021.114837_b0305","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ast.2018.11.040","article-title":"Recurrence network analysis for uncovering dynamic transition of thermo-acoustic instability of supercritical hydrocarbon fuel flow","volume":"85","author":"Zan","year":"2019","journal-title":"Aerospace Science and Technology"},{"key":"10.1016\/j.eswa.2021.114837_b0310","series-title":"Big data analysis: new algorithms for a new society","first-page":"91","article-title":"An overview of concept drift applications","author":"\u017dliobait\u0117","year":"2016"},{"key":"10.1016\/j.eswa.2021.114837_b0315","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.physrep.2018.10.005","article-title":"Complex network approaches to nonlinear time series analysis","volume":"787","author":"Zou","year":"2019","journal-title":"Physics Reports"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421002785?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421002785?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,12]],"date-time":"2023-03-12T03:22:59Z","timestamp":1678591379000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421002785"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":63,"alternative-id":["S0957417421002785"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.114837","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On using the modularity of recurrence network communities to detect change-point behaviour","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.114837","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"114837"}}