iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ESWA.2018.11.042
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T12:40:53Z","timestamp":1725972053350},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.eswa.2018.11.042","type":"journal-article","created":{"date-parts":[[2018,11,30]],"date-time":"2018-11-30T11:25:36Z","timestamp":1543577136000},"page":"346-356","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":36,"special_numbering":"C","title":["Linearized sigmoidal activation: A novel activation function with tractable non-linear characteristics to boost representation capability"],"prefix":"10.1016","volume":"120","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1728-1198","authenticated-orcid":false,"given":"Vivek Singh","family":"Bawa","sequence":"first","affiliation":[]},{"given":"Vinay","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2018.11.042_bib0001","unstructured":"Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation functions to improve deep neural networks. arXiv:1412.6830v1."},{"issue":"3","key":"10.1016\/j.eswa.2018.11.042_bib0002","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1109\/18.256500","article-title":"Universal approximation bounds for superpositions of a sigmoidal function","volume":"39","author":"Barron","year":"1993","journal-title":"IEEE Transactions on Information Theory"},{"key":"10.1016\/j.eswa.2018.11.042_bib0003","unstructured":"Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. arXiv:1704.05796v1."},{"key":"10.1016\/j.eswa.2018.11.042_bib0004","doi-asserted-by":"crossref","unstructured":"Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., & Bengio, Y. (2010). Theano: A cpu and gpu math compiler in python. (pp. 1\u20137).","DOI":"10.25080\/Majora-92bf1922-003"},{"key":"10.1016\/j.eswa.2018.11.042_bib0005","unstructured":"Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2016). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915v1."},{"key":"10.1016\/j.eswa.2018.11.042_bib0006","unstructured":"Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (elus). arXiv:1511.07289v1."},{"key":"10.1016\/j.eswa.2018.11.042_bib0007","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.neunet.2016.06.002","article-title":"Pointwise and uniform approximation by multivariate neural network operators of the max-product type","volume":"81","author":"Costarelli","year":"2016","journal-title":"Neural Networks"},{"issue":"2\u20133","key":"10.1016\/j.eswa.2018.11.042_bib0008","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1002\/mana.201600006","article-title":"Convergence for a family of neural network operators in orlicz spaces","volume":"290","author":"Costarelli","year":"2017","journal-title":"Mathematische Nachrichten"},{"issue":"1","key":"10.1016\/j.eswa.2018.11.042_bib0009","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1109\/TASL.2011.2134090","article-title":"Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition","volume":"20","author":"Dahl","year":"2012","journal-title":"IEEE Transactions on Audio, Speech, and Language Processing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0010","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. (pp. 248\u2013255).","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"10.1016\/j.eswa.2018.11.042_bib0011","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.neunet.2018.01.007","article-title":"A novel type of activation function in artificial neural networks: Trained activation function","volume":"99","author":"Ertu\u011frul","year":"2018","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2018.11.042_bib0012","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. (pp. 580\u2013587).","DOI":"10.1109\/CVPR.2014.81"},{"key":"10.1016\/j.eswa.2018.11.042_bib0013","unstructured":"Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. (pp. 249\u2013256)."},{"key":"10.1016\/j.eswa.2018.11.042_bib0014","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.neunet.2014.09.005","article-title":"Challenges in representation learning: A report on three machine learning contests","volume":"64","author":"Goodfellow","year":"2015","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2018.11.042_bib0015","unstructured":"Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks. arXiv:1302.4389v1."},{"key":"10.1016\/j.eswa.2018.11.042_bib0016","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. (pp. 1026\u20131034).","DOI":"10.1109\/ICCV.2015.123"},{"key":"10.1016\/j.eswa.2018.11.042_bib0017","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. (pp. 770\u2013778).","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.eswa.2018.11.042_bib0018","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neucom.2015.12.042","article-title":"Speed up deep neural network based pedestrian detection by sharing features across multi-scale models","volume":"185","author":"Jiang","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0019","unstructured":"Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing neural networks. (pp. 972\u2013981)."},{"key":"10.1016\/j.eswa.2018.11.042_bib0020","unstructured":"Krizhevsky, A., Nair, V., & Hinton, G. (2014). The cifar-10 dataset. online: http:\/\/www.cs.toronto.edu\/kriz\/cifar.html."},{"key":"10.1016\/j.eswa.2018.11.042_bib0021","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. (pp. 1097\u20131105)."},{"key":"10.1016\/j.eswa.2018.11.042_bib0022","unstructured":"LeCun, Y. (1998). The mnist database of handwritten digits. http:\/\/yann.lecun.com\/exdb\/mnist\/."},{"issue":"2","key":"10.1016\/j.eswa.2018.11.042_bib0023","doi-asserted-by":"crossref","first-page":"463","DOI":"10.4171\/ZAA\/1156","article-title":"Approximation by superpositions of a sigmoidal function","volume":"22","author":"Lewicki","year":"2003","journal-title":"Zeitschrift fur Analysis und ihre Anwendungen"},{"key":"10.1016\/j.eswa.2018.11.042_bib0024","doi-asserted-by":"crossref","first-page":"1219","DOI":"10.1016\/j.neucom.2017.09.062","article-title":"Image super-resolution using a dilated convolutional neural network","volume":"275","author":"Lin","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0025","unstructured":"Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. 30 (1), 3."},{"key":"10.1016\/j.eswa.2018.11.042_bib0026","unstructured":"Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. (pp. 807\u2013814)."},{"key":"10.1016\/j.eswa.2018.11.042_bib0027","unstructured":"Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature learning. 2011 (2), 5."},{"key":"10.1016\/j.eswa.2018.11.042_bib0028","unstructured":"Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. (pp. 1310\u20131318)."},{"key":"10.1016\/j.eswa.2018.11.042_bib0029","unstructured":"Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. (pp. 91\u201399)."},{"key":"10.1016\/j.eswa.2018.11.042_bib0030","unstructured":"Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556v1."},{"issue":"1","key":"10.1016\/j.eswa.2018.11.042_bib0031","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2018.11.042_bib0032","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. (pp. 1\u20139).","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.eswa.2018.11.042_bib0033","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.neucom.2016.08.098","article-title":"Photograph aesthetical evaluation and classification with deep convolutional neural networks","volume":"228","author":"Tan","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0034","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.neucom.2017.07.061","article-title":"A joint residual network with paired relus activation for image super-resolution","volume":"273","author":"Tang","year":"2018","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.eswa.2018.11.042_bib0035","first-page":"26","article-title":"Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude","volume":"4","author":"Tieleman","year":"2012","journal-title":"COURSERA: Neural Networks for Machine Learning"},{"key":"10.1016\/j.eswa.2018.11.042_bib0036","unstructured":"Trottier, L., Giguere, P., & Chaib-draa, B. (2016). Parametric exponential linear unit for deep convolutional neural networks. arXiv preprint arXiv:1605.09332."},{"key":"10.1016\/j.eswa.2018.11.042_bib0037","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/j.neucom.2015.10.064","article-title":"Regional deep learning model for visual tracking","volume":"175","author":"Wu","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0038","doi-asserted-by":"crossref","first-page":"1983","DOI":"10.1016\/j.neucom.2015.08.031","article-title":"A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation","volume":"173","author":"Xiao","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0039","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.neucom.2014.09.047","article-title":"Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function","volume":"151","author":"Xiao","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0040","unstructured":"Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv:1505.00853v1."},{"issue":"5","key":"10.1016\/j.eswa.2018.11.042_bib0041","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.1109\/TIP.2014.2311377","article-title":"Click prediction for web image reranking using multimodal sparse coding","volume":"23","author":"Yu","year":"2014","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2018.11.042_bib0042","doi-asserted-by":"crossref","DOI":"10.1109\/TCYB.2016.2591583","article-title":"Deep multimodal distance metric learning using click constraints for image ranking","author":"Yu","year":"2017","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.eswa.2018.11.042_bib0043","unstructured":"Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv:1409.2329v1."},{"key":"10.1016\/j.eswa.2018.11.042_bib0044","doi-asserted-by":"crossref","unstructured":"Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. (pp. 818\u2013833).","DOI":"10.1007\/978-3-319-10590-1_53"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417418307619?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417418307619?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,16]],"date-time":"2020-11-16T11:14:43Z","timestamp":1605525283000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417418307619"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":44,"alternative-id":["S0957417418307619"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.eswa.2018.11.042","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Linearized sigmoidal activation: A novel activation function with tractable non-linear characteristics to boost representation capability","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2018.11.042","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}