iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ESWA.2013.12.007
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T07:13:08Z","timestamp":1723187588626},"reference-count":55,"publisher":"Elsevier BV","issue":"8","license":[{"start":{"date-parts":[[2014,6,1]],"date-time":"2014-06-01T00:00:00Z","timestamp":1401580800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2014,6]]},"DOI":"10.1016\/j.eswa.2013.12.007","type":"journal-article","created":{"date-parts":[[2013,12,8]],"date-time":"2013-12-08T19:00:54Z","timestamp":1386529254000},"page":"3691-3702","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":79,"title":["Tourism demand forecasting using novel hybrid system"],"prefix":"10.1016","volume":"41","author":[{"given":"Ping-Feng","family":"Pai","sequence":"first","affiliation":[]},{"given":"Kuo-Chen","family":"Hung","sequence":"additional","affiliation":[]},{"given":"Kuo-Ping","family":"Lin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2013.12.007_b0005","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1016\/j.ijforecast.2010.05.019","article-title":"Combination of long term and short term forecasts, with application to tourism demand forecasting","volume":"27","author":"Andrawis","year":"2011","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2013.12.007_b0010","series-title":"Travel tourism and hospitality research","article-title":"Demand forecasting and estimation","author":"Archer","year":"1987"},{"key":"10.1016\/j.eswa.2013.12.007_b0015","series-title":"Pattern recognition with fuzzy objective function algorithms","author":"Bezdek","year":"1981"},{"key":"10.1016\/j.eswa.2013.12.007_b0020","series-title":"Time series analysis: Forecasting and control","author":"Box","year":"1976"},{"key":"10.1016\/j.eswa.2013.12.007_b0025","doi-asserted-by":"crossref","first-page":"10368","DOI":"10.1016\/j.eswa.2011.02.049","article-title":"Combining linear and nonlinear model in forecasting tourism demand","volume":"38","author":"Chen","year":"2011","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2013.12.007_b0030","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.tourman.2005.12.018","article-title":"Support vector regression with genetic algorithms in forecasting tourism demand","volume":"28","author":"Chen","year":"2007","journal-title":"Tourism Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0035","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.tourman.2007.04.003","article-title":"A fractionally integrated autoregressive moving average approach to forecasting tourism demand","volume":"29","author":"Chu","year":"2008","journal-title":"Tourism Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0040","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.1016\/j.tourman.2008.02.020","article-title":"Analyzing and forecasting tourism demand with ARA algorithm","volume":"29","author":"Chu","year":"2008","journal-title":"Tourism Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0045","doi-asserted-by":"crossref","first-page":"1414","DOI":"10.1016\/j.tourman.2011.01.018","article-title":"A piecewise linear approach to modeling and forecasting demand for Macau tourism","volume":"32","author":"Chu","year":"2011","journal-title":"Tourism Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0050","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.econmod.2013.09.024","article-title":"Forecasting tourism demand to Catalonia: Neural networks vs. time series models","volume":"36","author":"Claveria","year":"2014","journal-title":"Economic Modelling"},{"key":"10.1016\/j.eswa.2013.12.007_b0055","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.chemolab.2009.05.008","article-title":"Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR","volume":"98","author":"Cui","year":"2009","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"key":"10.1016\/j.eswa.2013.12.007_b0060","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.ijpe.2011.02.019","article-title":"Using least squares support vector machines for the airframe structures manufacturing cost estimation","volume":"131","author":"Deng","year":"2011","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.eswa.2013.12.007_b0065","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1080\/01969727308546046","article-title":"A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters","volume":"3","author":"Dunn","year":"1973","journal-title":"Journal of Cybernetics"},{"key":"10.1016\/j.eswa.2013.12.007_b0070","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.physa.2007.03.050","article-title":"Price forecast in the competitive electricity market by support vector machine","volume":"382","author":"Gaoa","year":"2007","journal-title":"Physica A"},{"key":"10.1016\/j.eswa.2013.12.007_b0075","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.chemolab.2010.02.003","article-title":"PKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression","volume":"101","author":"Goodarzi","year":"2010","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"key":"10.1016\/j.eswa.2013.12.007_b0080","series-title":"Adaptation in natural and artificial system","author":"Holland","year":"1975"},{"key":"10.1016\/j.eswa.2013.12.007_b0085","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1109\/TFUZZ.2004.825073","article-title":"Linear fuzzy clustering techniques with missing values and their application to local principal component analysis","volume":"12","author":"Honda","year":"2004","journal-title":"IEEE Transaction on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2013.12.007_b0100","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.1016\/j.amc.2006.01.064","article-title":"A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts","volume":"181","author":"Hua","year":"2006","journal-title":"Applied Mathematics and Computation"},{"key":"10.1016\/j.eswa.2013.12.007_b0105","doi-asserted-by":"crossref","first-page":"2513","DOI":"10.1016\/j.cor.2004.03.016","article-title":"Forecasting stock market movement direction with support vector machine","volume":"32","author":"Huang","year":"2005","journal-title":"Computer and Operations Research"},{"key":"10.1016\/j.eswa.2013.12.007_b0110","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.ins.2012.10.033","article-title":"Long-term business cycle forecasting through a potential intuitionistic fuzzy least-squares support vector regression approach","volume":"224","author":"Hung","year":"2013","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2013.12.007_b0115","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1109\/TFUZZ.2006.889763","article-title":"Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means","volume":"15","author":"Hwang","year":"2007","journal-title":"IEEE Transaction on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2013.12.007_b0120","series-title":"Algorithm for Clustering Data","author":"Jain","year":"1988"},{"key":"10.1016\/j.eswa.2013.12.007_b0125","doi-asserted-by":"crossref","first-page":"3402","DOI":"10.1016\/j.ins.2008.04.007","article-title":"Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives","volume":"178","author":"Jayadva","year":"2008","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2013.12.007_b0130","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/S0925-2312(03)00372-2","article-title":"Financial time series forecasting using support vector machines","volume":"55","author":"Kim","year":"2003","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2013.12.007_b0135","series-title":"Self-organizing maps","author":"Kohonen","year":"1997"},{"key":"10.1016\/j.eswa.2013.12.007_b0140","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1205\/cherd.04246","article-title":"Customer demand forecasting via support vector regression analysis","volume":"83","author":"Levis","year":"2005","journal-title":"Chemical Engineering Research and Design"},{"key":"10.1016\/j.eswa.2013.12.007_b0145","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1109\/TSMCC.2008.2001707","article-title":"Predicting the parts weight in plastic injection molding using least squares support vector regression","volume":"38","author":"Li","year":"2008","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Review"},{"key":"10.1016\/j.eswa.2013.12.007_b0150","doi-asserted-by":"crossref","first-page":"366","DOI":"10.4028\/www.scientific.net\/AMR.630.366","article-title":"Application of least-squares support vector regression with PSO for CPU performance forecasting","volume":"630","author":"Lin","year":"2013","journal-title":"Advanced Materials Research"},{"key":"10.1016\/j.eswa.2013.12.007_b0160","doi-asserted-by":"crossref","first-page":"5318","DOI":"10.1016\/j.amc.2010.11.055","article-title":"Forecasting concentrations of air pollutants by support vector regression models with data preprocessing procedures and immune algorithms","volume":"217","author":"Lin","year":"2011","journal-title":"Applied Mathematics and Computation"},{"key":"10.1016\/j.eswa.2013.12.007_b0165","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1093\/bioinformatics\/btl560","article-title":"Computing the maximum similarity bi-clusters of gene expression data","volume":"23","author":"Liu","year":"2007","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2013.12.007_b0170","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1016\/j.chemosphere.2004.10.032","article-title":"Potential assessment of the \u201csupport vector machine\u201d method in forecasting ambient air pollutant trends","volume":"59","author":"Lu","year":"2005","journal-title":"Chemosphere"},{"key":"10.1016\/j.eswa.2013.12.007_b0175","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1098\/rsta.1909.0016","article-title":"Function of positive and negative type and their connection with the theory of integral equations","volume":"A209","author":"Mercer","year":"1909","journal-title":"Philosophical Transactions of the Royal Society"},{"key":"10.1016\/j.eswa.2013.12.007_b0180","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1016\/j.renene.2003.11.009","article-title":"Support vector machines for wind speed prediction","volume":"29","author":"Mohandes","year":"2004","journal-title":"Renewable Energy"},{"key":"10.1016\/j.eswa.2013.12.007_b0185","first-page":"375","article-title":"The application of support vector machines to forecast tourist arrivals in Barbados: an empirical study","volume":"23","author":"Pai","year":"2006","journal-title":"International Journal of Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0190","doi-asserted-by":"crossref","first-page":"3734","DOI":"10.1016\/j.neucom.2009.06.005","article-title":"A normal least squares support vector machine (NLS-SVM) and its learning algorithm","volume":"72","author":"Peng","year":"2009","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2013.12.007_b0195","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.chemosphere.2009.10.029","article-title":"Support vector regression and least squares support vector regression for hormeticdose-response curves fitting","volume":"78","author":"Qin","year":"2010","journal-title":"Chemosphere"},{"key":"10.1016\/j.eswa.2013.12.007_b0200","doi-asserted-by":"crossref","first-page":"562","DOI":"10.1016\/j.asoc.2009.08.025","article-title":"Weighted least squares support vector machine local region method for nonlinear time series prediction","volume":"10","author":"Quan","year":"2010","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2013.12.007_b0205","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.knosys.2013.01.014","article-title":"Developing a hybrid intelligent model for forecasting problems: Case study of tourism demand time series","volume":"43","author":"Shahrabi","year":"2013","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2013.12.007_b0210","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.annals.2010.05.003","article-title":"Combination forecasts of international tourism demand","volume":"38","author":"Shen","year":"2011","journal-title":"Annals of Tourism Research"},{"key":"10.1016\/j.eswa.2013.12.007_b0215","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.ijforecast.2011.12.003","article-title":"Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system","volume":"29","author":"Song","year":"2013","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2013.12.007_b0220","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.tourman.2007.07.016","article-title":"Tourism demand modeling and forecasting. A review of recent research","volume":"29","author":"Song","year":"2008","journal-title":"Tourism Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0225","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.eswa.2013.12.007_b0230","series-title":"Least squares support vector machines","author":"Suykens","year":"2002"},{"key":"10.1016\/j.eswa.2013.12.007_b0235","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1016\/S0925-2312(01)00676-2","article-title":"Modified support vector machines in financial time series forecasting","volume":"48","author":"Tay","year":"2002","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2013.12.007_b0240","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.tourman.2013.10.008","article-title":"Forecasting of Hong Kong airport\u2019s passenger throughput","volume":"42","author":"Tsui","year":"2014","journal-title":"Tourism Management"},{"key":"10.1016\/j.eswa.2013.12.007_b0245","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1109\/72.935093","article-title":"Financial time series prediction using least squares support vector machines within the evidence framework","volume":"12","author":"Van Gestel","year":"2001","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.eswa.2013.12.007_b0250","series-title":"The nature of statistical learning theory","author":"Vapnik","year":"1995"},{"key":"10.1016\/j.eswa.2013.12.007_b0255","first-page":"281","article-title":"Support vector machine for function approximation, regression estimation, and signal processing","volume":"9","author":"Vapnik","year":"1996","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2013.12.007_b0260","series-title":"Tourism planning and development issues","article-title":"Estimating the demand for international tourism using time series analysis","author":"Wander","year":"1980"},{"key":"10.1016\/j.eswa.2013.12.007_b0265","doi-asserted-by":"crossref","first-page":"4769","DOI":"10.1016\/j.eswa.2011.09.159","article-title":"A sparse Gaussian process regression model for tourism demand forecasting in Hong Kong","volume":"39","author":"Wu","year":"2012","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2013.12.007_b0270","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1016\/j.conengprac.2006.10.010","article-title":"Support vector regression model predictive control on a HVAC plant","volume":"15","author":"Xi","year":"2007","journal-title":"Control Engineering Practice"},{"key":"10.1016\/j.eswa.2013.12.007_b0275","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0895-7177(93)90202-A","article-title":"A survey of fuzzy clustering","volume":"18","author":"Yang","year":"1993","journal-title":"Mathematical and Computer Modelling"},{"key":"10.1016\/j.eswa.2013.12.007_b0280","doi-asserted-by":"crossref","first-page":"1042","DOI":"10.1016\/j.matdes.2009.09.057","article-title":"Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity","volume":"31","author":"Yang","year":"2010","journal-title":"Materials and Design"},{"key":"10.1016\/j.eswa.2013.12.007_b0285","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1016\/j.jhydrol.2006.01.021","article-title":"Support vector regression for real-time flood stage forecasting","volume":"328","author":"Yu","year":"2006","journal-title":"Journal of Hydrology"},{"key":"10.1016\/j.eswa.2013.12.007_b0290","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1109\/5326.897072","article-title":"Neural networks for classification: A survey","volume":"30","author":"Zhang","year":"2000","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417413009718?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417413009718?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,8]],"date-time":"2018-10-08T08:58:11Z","timestamp":1538989091000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417413009718"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,6]]},"references-count":55,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2014,6]]}},"alternative-id":["S0957417413009718"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2013.12.007","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2014,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Tourism demand forecasting using novel hybrid system","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2013.12.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}