iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ENGAPPAI.2024.108268
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T19:22:29Z","timestamp":1720466549748},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013076","name":"National Major Science and Technology Projects of China","doi-asserted-by":"publisher","award":["J2019-III-0007-0050"],"id":[{"id":"10.13039\/501100013076","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.engappai.2024.108268","type":"journal-article","created":{"date-parts":[[2024,3,27]],"date-time":"2024-03-27T20:27:51Z","timestamp":1711571271000},"page":"108268","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PC","title":["An investigation on implementation of generating adversarial network-based surrogate models for prediction of turbine endwall film cooling effectiveness"],"prefix":"10.1016","volume":"133","author":[{"given":"Weixin","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3662-5611","authenticated-orcid":false,"given":"Zhao","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Song","sequence":"additional","affiliation":[]},{"given":"Yixuan","family":"Lu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9112-310X","authenticated-orcid":false,"given":"Zhenping","family":"Feng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2024.108268_bib1","series-title":"IMECE Conference Proceedings","article-title":"Irregular shape optimization for the film cooling Nozzle of gas turbines using numerical optimization tool","author":"Alshehaby","year":"2019"},{"key":"10.1016\/j.engappai.2024.108268_bib2","series-title":"ASME Conference Proceedings","article-title":"Numerical optimization of geometry parameters for shaped film cooling holes","author":"Alshehaby","year":"2017"},{"key":"10.1016\/j.engappai.2024.108268_bib3","series-title":"ASME Conference Proceedings","article-title":"Effects of freestream Mach number, Reynolds number, and boundary layer thickness on film cooling effectiveness of shaped holes","author":"Anderson","year":"2016"},{"key":"10.1016\/j.engappai.2024.108268_bib4","series-title":"ASME Conference Proceedings","article-title":"Correlation of film-cooling effectiveness from thermographic measurements at engine like conditions","author":"Baldauf","year":"2002"},{"key":"10.1016\/j.engappai.2024.108268_bib5","series-title":"IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) IEEE","first-page":"8789","article-title":"StarGAN: unified generative adversarial networks for multi-domain image-to-image translation","author":"Choi","year":"2018"},{"key":"10.1016\/j.engappai.2024.108268_bib6","series-title":"IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"StarGAN v2: diverse image synthesis for multiple domains","author":"Choi","year":"2020"},{"key":"10.1016\/j.engappai.2024.108268_bib7","article-title":"Joint deep reversible regression model and physics-informed unsupervised learning for temperature field reconstruction","volume":"118","author":"Gong","year":"2023","journal-title":"Eng. Appl. AI"},{"key":"10.1016\/j.engappai.2024.108268_bib8","first-page":"752","article-title":"Thermal to digital image correlation image to image translation with CycleGAN and Pix2Pix","volume":"93","author":"Grebo","year":"2023","journal-title":"Mater. Today: Proc."},{"issue":"1","key":"10.1016\/j.engappai.2024.108268_bib9","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1115\/1.3262013","article-title":"Flat-Plate film cooling with steam injection through one row and two rows of inclined holes","volume":"108","author":"Han","year":"1986","journal-title":"J. Turbomach."},{"key":"10.1016\/j.engappai.2024.108268_bib10","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1016\/j.procs.2023.10.088","article-title":"Pix2Pix hyperparameter optimisation prediction","volume":"225","author":"H\u00f6lscher","year":"2023","journal-title":"Proc. Comput. Sci."},{"key":"10.1016\/j.engappai.2024.108268_bib11","series-title":"Multimodal Unsupervised Image-To-Image Translation","author":"Huang","year":"2018"},{"key":"10.1016\/j.engappai.2024.108268_bib12","series-title":"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.engappai.2024.108268_bib13","series-title":"30TH Ieee Conference on Computer VISION and Pattern Recognition","first-page":"5967","article-title":"Image-to-Image translation with conditional adversarial networks","author":"Isola","year":"2017"},{"key":"10.1016\/j.engappai.2024.108268_bib14","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.applthermaleng.2018.02.012","article-title":"Multi-step optimizations of leading edge and downstream film cooling configurations on a high-pressure turbine vane","volume":"134","author":"Jiang","year":"2018","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.engappai.2024.108268_bib15","article-title":"A transformer-based decoder for flow field prediction","volume":"123","author":"Jiang","year":"2023","journal-title":"Eng. Appl. AI"},{"key":"10.1016\/j.engappai.2024.108268_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2022.126381","article-title":"Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade","volume":"265","author":"Jiang","year":"2023","journal-title":"J. Energy"},{"key":"10.1016\/j.engappai.2024.108268_bib17","doi-asserted-by":"crossref","first-page":"2551","DOI":"10.1007\/s11431-022-2109-4","article-title":"A multi-scale convolutional neural network for bearing compound fault diagnosis under various noise conditions","volume":"65","author":"Jin","year":"2022","journal-title":"Sci. China Technol. Sci."},{"key":"10.1016\/j.engappai.2024.108268_bib18","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.122932","article-title":"Automated door placement in architectural plans through combined deep-learning networks of ResNet-50 and Pix2Pix-GAN","volume":"244","author":"Kim","year":"2024","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108268_bib19","doi-asserted-by":"crossref","first-page":"3039","DOI":"10.1007\/s11431-022-2122-y","article-title":"Deep learning for complex displacement field measurement","volume":"65","author":"Lan","year":"2022","journal-title":"Sci. China Technol. Sci."},{"issue":"15\u201316","key":"10.1016\/j.engappai.2024.108268_bib20","doi-asserted-by":"crossref","first-page":"2996","DOI":"10.1016\/j.ijheatmasstransfer.2010.03.032","article-title":"Shape optimization of a fan-shaped hole to enhance film-cooling effectiveness","volume":"53","author":"Lee","year":"2010","journal-title":"Int. J. Heat Mass Tran."},{"issue":"1","key":"10.1016\/j.engappai.2024.108268_bib21","first-page":"226","article-title":"Surrogate based optimization of a laidback fan-shaped hole for film-cooling","volume":"32","author":"Lee","year":"2011","journal-title":"Int. J. Heat Mass Tran."},{"issue":"1","key":"10.1016\/j.engappai.2024.108268_bib22","first-page":"226","article-title":"Multi-objective optimization of a laidback fan shaped film-cooling hole using evolutionary algorithm","volume":"32","author":"Lee","year":"2011","journal-title":"Int. J. Fluid Mach Sys."},{"issue":"4","key":"10.1016\/j.engappai.2024.108268_bib23","article-title":"Artificial intelligence aided design of film cooling scheme on turbine guide vane","volume":"9","author":"Li","year":"2020","journal-title":"J. Propul. Power"},{"key":"10.1016\/j.engappai.2024.108268_bib24","article-title":"A physics-informed neural network framework to predict 3D temperature field without labeled data in process of laser metal deposition","volume":"120","author":"Li","year":"2023","journal-title":"Eng. Appl. AI"},{"key":"10.1016\/j.engappai.2024.108268_bib25","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.ijthermalsci.2017.11.030","article-title":"Genetic algorithm optimization of film cooling effectiveness over a rotating blade","volume":"125","author":"Moeini","year":"2018","journal-title":"Int. J. Therm. Sci."},{"key":"10.1016\/j.engappai.2024.108268_bib26","series-title":"IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) IEEE","first-page":"1505 04597","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"4","key":"10.1016\/j.engappai.2024.108268_bib27","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1115\/1.2840938","article-title":"Film cooling with compound angle holes: adiabatic effectiveness","volume":"118","author":"Schmidt","year":"1996","journal-title":"J. Turbomach."},{"key":"10.1016\/j.engappai.2024.108268_bib28","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.applthermaleng.2019.03.029","article-title":"Optimization of the configuration of the laidback fan-shaped film cooling hole with a lateral expansion angle of 10 degrees","volume":"153","author":"Seo","year":"2019","journal-title":"Appl. Therm. Eng."},{"issue":"3","key":"10.1016\/j.engappai.2024.108268_bib29","article-title":"Turbine vane endwall film cooling comparison from five film-hole design patterns and three upstream injection angles","volume":"11","author":"Shiau","year":"2019","journal-title":"ASME J. Thermal Sci. Eng."},{"key":"10.1016\/j.engappai.2024.108268_bib30","series-title":"ASME Conference Proceedings","article-title":"Adjoint-response surface method in aerodynamic shape optimization of turbomachinery blades","author":"Tang","year":"2016"},{"key":"10.1016\/j.engappai.2024.108268_bib31","series-title":"ASME Conference Proceedings","article-title":"Optimization of film-cooling holes shape by principal components method and CFD","author":"Vinogradov","year":"2014"},{"key":"10.1016\/j.engappai.2024.108268_bib32","series-title":"IEEE\/CVF Conference on Computer VISION and Pattern Recognition","first-page":"8798","article-title":"High-resolution image synthesis and semantic manipulation with conditional GANs","author":"Wang","year":"2018"},{"issue":"APR","key":"10.1016\/j.engappai.2024.108268_bib33","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.ijheatmasstransfer.2018.12.079","article-title":"Turbine vane endwall film cooling from mid-chord or downstream rows and upstream coolant injection","volume":"133","author":"Wang","year":"2019","journal-title":"Int. J. Heat Mass Tran."},{"key":"10.1016\/j.engappai.2024.108268_bib34","doi-asserted-by":"crossref","unstructured":"H. Xing, L. Luo, W. Du, S. Wang, Direct and Inverse Model for Single-Hole Film Cooling with Machine Learning, J. Turbomach. 144(4): 041006. https:\/\/doi.org\/10.1115\/1.4052601.","DOI":"10.1115\/1.4052601"},{"key":"10.1016\/j.engappai.2024.108268_bib35","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijthermalsci.2020.106774","article-title":"A machine learning approach to quantify the film cooling superposition effect for effusion cooling structures","volume":"162","author":"Yang","year":"2021","journal-title":"Int. J. Therm. Sci."},{"issue":"3","key":"10.1016\/j.engappai.2024.108268_bib36","article-title":"Experimental and numerical investigations of discrete film holes cooling performance on a blade endwall with mid-passage gap leakage","volume":"201","author":"Zhang","year":"2022","journal-title":"Int. J. Heat Mass Tran."},{"key":"10.1016\/j.engappai.2024.108268_bib37","article-title":"Multi-fidelity surrogate modeling for temperature field prediction using deep convolution neural network","volume":"123","author":"Zhang","year":"2023","journal-title":"Eng. Appl. AI"},{"key":"10.1016\/j.engappai.2024.108268_bib38","volume":"vol. 1711","author":"Zhu","year":"2017"},{"key":"10.1016\/j.engappai.2024.108268_bib39","series-title":"IEEE International Conference on Computer Vision (ICCV)","first-page":"2242","article-title":"Unpaired image-to-image translation using cycle-consistent adversarial networks","author":"Zhu","year":"2017"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624004263?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624004263?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T01:00:13Z","timestamp":1717290013000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197624004263"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":39,"alternative-id":["S0952197624004263"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108268","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An investigation on implementation of generating adversarial network-based surrogate models for prediction of turbine endwall film cooling effectiveness","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108268","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108268"}}