{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T16:53:02Z","timestamp":1726419182354},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100005047","name":"Natural Science Foundation of Liaoning Province","doi-asserted-by":"publisher","award":["2021-MS-030"],"id":[{"id":"10.13039\/501100005047","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.engappai.2023.106224","type":"journal-article","created":{"date-parts":[[2023,4,12]],"date-time":"2023-04-12T09:53:43Z","timestamp":1681293223000},"page":"106224","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"PA","title":["Bubble detection in photoresist with small samples based on GAN augmentations and modified YOLO"],"prefix":"10.1016","volume":"123","author":[{"given":"Guang","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8392-1777","authenticated-orcid":false,"given":"Chunhe","family":"Song","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8664-440X","authenticated-orcid":false,"given":"Zhijia","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Shuping","family":"Cui","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.engappai.2023.106224_b1","doi-asserted-by":"crossref","first-page":"1267","DOI":"10.1109\/TII.2015.2481719","article-title":"Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps","volume":"11","author":"Adly","year":"2015","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.engappai.2023.106224_b2","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.jmsy.2022.06.011","article-title":"Deep learning methods for object detection in smart manufacturing: A survey","volume":"64","author":"Ahmad","year":"2022","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2023.106224_b3","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2021.3106171","article-title":"A systematic review of deep learning for silicon wafer defect recognition","author":"Batool","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2023.106224_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114820","article-title":"Machine Learning for industrial applications: A comprehensive literature review","volume":"175","author":"Bertolini","year":"2021","journal-title":"Expert Syst. Appl."},{"year":"2020","series-title":"Yolov4: Optimal speed and accuracy of object detection","author":"Bochkovskiy","key":"10.1016\/j.engappai.2023.106224_b5"},{"year":"2018","series-title":"Large scale GAN training for high fidelity natural image synthesis","author":"Brock","key":"10.1016\/j.engappai.2023.106224_b6"},{"key":"10.1016\/j.engappai.2023.106224_b7","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2022.3142820","article-title":"Dynamic prototype network based on sample adaptation for few-shot malware detection","author":"Chai","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.engappai.2023.106224_b8","doi-asserted-by":"crossref","DOI":"10.1109\/TNSM.2022.3200866","article-title":"From data and model levels: Improve the performance of few-shot malware classification","author":"Chai","year":"2022","journal-title":"IEEE Trans. Netw. Serv. Manag."},{"issue":"2","key":"10.1016\/j.engappai.2023.106224_b9","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1109\/TSM.2021.3065405","article-title":"Machine learning-based detection method for wafer test induced defects","volume":"34","author":"Cheng","year":"2021","journal-title":"IEEE Trans. Semicond. Manuf."},{"key":"10.1016\/j.engappai.2023.106224_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.mehy.2020.109663","article-title":"An exemplar pyramid feature extraction based humerus fracture classification method","volume":"140","author":"Demir","year":"2020","journal-title":"Med. Hypotheses"},{"key":"10.1016\/j.engappai.2023.106224_b11","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1109\/TIP.2022.3144017","article-title":"Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification","volume":"31","author":"Dong","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2023.106224_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109616","article-title":"Improving performance and efficiency of Graph Neural Networks by injective aggregation","volume":"254","author":"Dong","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"3","key":"10.1016\/j.engappai.2023.106224_b13","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/0047-259X(82)90077-X","article-title":"The Fr\u00e9chet distance between multivariate normal distributions","volume":"12","author":"Dowson","year":"1982","journal-title":"J. Multivariate Anal."},{"issue":"4","key":"10.1016\/j.engappai.2023.106224_b14","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1109\/TSM.2021.3107689","article-title":"Double coating process using the single photoresist and the thickness prediction","volume":"34","author":"Fan","year":"2021","journal-title":"IEEE Trans. Semicond. Manuf."},{"year":"2022","series-title":"GAN-based generation of realistic 3D data: A systematic review and taxonomy","author":"Ferreira","key":"10.1016\/j.engappai.2023.106224_b15"},{"year":"2021","series-title":"Yolox: Exceeding yolo series in 2021","author":"Ge","key":"10.1016\/j.engappai.2023.106224_b16"},{"key":"10.1016\/j.engappai.2023.106224_b17","doi-asserted-by":"crossref","unstructured":"Girshick,\u00a0R., 2015. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. ICCV.","DOI":"10.1109\/ICCV.2015.169"},{"key":"10.1016\/j.engappai.2023.106224_b18","doi-asserted-by":"crossref","unstructured":"Girshick,\u00a0R., Donahue,\u00a0J., Darrell,\u00a0T., Malik,\u00a0J., 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR.","DOI":"10.1109\/CVPR.2014.81"},{"key":"10.1016\/j.engappai.2023.106224_b19","first-page":"14745","article-title":"Transgan: Two pure transformers can make one strong gan, and that can scale up","volume":"34","author":"Jiang","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2023.106224_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104828","article-title":"Feed-forward LPQNet based automatic Alzheimer\u2019s disease detection model","volume":"137","author":"Kaplan","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.engappai.2023.106224_b21","doi-asserted-by":"crossref","unstructured":"Karras,\u00a0T., Laine,\u00a0S., Aittala,\u00a0M., Hellsten,\u00a0J., Lehtinen,\u00a0J., Aila,\u00a0T., 2020. Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 8110\u20138119.","DOI":"10.1109\/CVPR42600.2020.00813"},{"issue":"7553","key":"10.1016\/j.engappai.2023.106224_b22","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.engappai.2023.106224_b23","doi-asserted-by":"crossref","unstructured":"Lin,\u00a0T.-Y., Doll\u00e1r,\u00a0P., Girshick,\u00a0R., He,\u00a0K., Hariharan,\u00a0B., Belongie,\u00a0S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2117\u20132125.","DOI":"10.1109\/CVPR.2017.106"},{"issue":"14","key":"10.1016\/j.engappai.2023.106224_b24","doi-asserted-by":"crossref","first-page":"1740","DOI":"10.3390\/electronics10141740","article-title":"GaborPDNet: Gabor transformation and deep neural network for Parkinson\u2019s disease detection using EEG signals","volume":"10","author":"Loh","year":"2021","journal-title":"Electronics"},{"key":"10.1016\/j.engappai.2023.106224_b25","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1016\/j.neucom.2022.01.005","article-title":"Review the state-of-the-art technologies of semantic segmentation based on deep learning","volume":"493","author":"Mo","year":"2022","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.engappai.2023.106224_b26","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1109\/TSM.2019.2897690","article-title":"Anomaly detection and segmentation for wafer defect patterns using deep convolutional encoder\u2013decoder neural network architectures in semiconductor manufacturing","volume":"32","author":"Nakazawa","year":"2019","journal-title":"IEEE Trans. Semicond. Manuf."},{"key":"10.1016\/j.engappai.2023.106224_b27","doi-asserted-by":"crossref","unstructured":"Redmon,\u00a0J., Divvala,\u00a0S., Girshick,\u00a0R., Farhadi,\u00a0A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779\u2013788.","DOI":"10.1109\/CVPR.2016.91"},{"key":"10.1016\/j.engappai.2023.106224_b28","doi-asserted-by":"crossref","unstructured":"Redmon,\u00a0J., Farhadi,\u00a0A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7263\u20137271.","DOI":"10.1109\/CVPR.2017.690"},{"year":"2018","series-title":"Yolov3: An incremental improvement","author":"Redmon","key":"10.1016\/j.engappai.2023.106224_b29"},{"key":"10.1016\/j.engappai.2023.106224_b30","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","volume":"28","author":"Ren","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2023.106224_b31","doi-asserted-by":"crossref","DOI":"10.1109\/TSM.2022.3146266","article-title":"Wafer bin map recognition with autoencoder-based data augmentation in semiconductor assembly process","author":"Shen","year":"2022","journal-title":"IEEE Trans. Semicond. Manuf."},{"issue":"4","key":"10.1016\/j.engappai.2023.106224_b32","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1109\/TSM.2020.3013004","article-title":"A light-weight neural network for wafer map classification based on data augmentation","volume":"33","author":"Tsai","year":"2020","journal-title":"IEEE Trans. Semicond. Manuf."},{"issue":"4","key":"10.1016\/j.engappai.2023.106224_b33","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1002\/qre.2627","article-title":"Defect pattern recognition on wafers using convolutional neural networks","volume":"36","author":"Wang","year":"2020","journal-title":"Qual. Reliab. Eng. Int."},{"issue":"4","key":"10.1016\/j.engappai.2023.106224_b34","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1109\/TSM.2020.3020985","article-title":"Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition","volume":"33","author":"Wang","year":"2020","journal-title":"IEEE Trans. Semicond. Manuf."},{"key":"10.1016\/j.engappai.2023.106224_b35","series-title":"2021 IEEE International Conference on Data Mining","first-page":"729","article-title":"PRGAN: personalized recommendation with conditional generative adversarial networks","author":"Wen","year":"2021"},{"key":"10.1016\/j.engappai.2023.106224_b36","doi-asserted-by":"crossref","unstructured":"Wo\u017aniak,\u00a0M., Wieczorek,\u00a0M., Si\u0142ka,\u00a0J., 2022. Deep neural network with transfer learning in remote object detection from drone. In: Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and beyond. pp. 121\u2013126.","DOI":"10.1145\/3555661.3560875"},{"issue":"1","key":"10.1016\/j.engappai.2023.106224_b37","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1109\/TSM.2015.2497264","article-title":"Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis","volume":"29","author":"Yu","year":"2015","journal-title":"IEEE Trans. Semicond. Manuf."},{"key":"10.1016\/j.engappai.2023.106224_b38","series-title":"2022 International Wireless Communications and Mobile Computing","first-page":"937","article-title":"WGAN-GP and LSTM based prediction model for aircraft 4-D Traj ectory","author":"Zhang","year":"2022"},{"year":"2017","series-title":"mixup: Beyond empirical risk minimization","author":"Zhang","key":"10.1016\/j.engappai.2023.106224_b39"},{"key":"10.1016\/j.engappai.2023.106224_b40","unstructured":"Zhao,\u00a0S., Liu,\u00a0Z., Lin,\u00a0J., Zhu,\u00a0J.-Y., Han,\u00a0S., 2020. Differentiable Augmentation for Data-Efficient GAN Training. In: Conference on Neural Information Processing Systems. NeurIPS."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623004086?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623004086?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T23:37:19Z","timestamp":1714261039000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623004086"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":40,"alternative-id":["S0952197623004086"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106224","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bubble detection in photoresist with small samples based on GAN augmentations and modified YOLO","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106224","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106224"}}