{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T08:33:55Z","timestamp":1726475635846},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.engappai.2020.104025","type":"journal-article","created":{"date-parts":[[2020,11,21]],"date-time":"2020-11-21T10:25:08Z","timestamp":1605954308000},"page":"104025","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":34,"special_numbering":"C","title":["Complex ISAR target recognition using deep adaptive learning"],"prefix":"10.1016","volume":"97","author":[{"given":"Bin","family":"Xue","sequence":"first","affiliation":[]},{"given":"Wanjun","family":"Yi","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Jing","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2020.104025_b1","unstructured":"Anon,, 2018. Cascade RetinaNet: Maintaining consistency for single-stage object detection. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, June, pp. 1\u201312."},{"key":"10.1016\/j.engappai.2020.104025_b2","doi-asserted-by":"crossref","unstructured":"Cai, Zhaowei, Vasconcelos, Nuno, 2018. Cascade R-CNN: Delving into high quality object detection. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, June, pp. 1\u20139.","DOI":"10.1109\/CVPR.2018.00644"},{"first-page":"1","year":"2016","series-title":"R-FCN: Object detection via region-based fully convolutional networks","author":"Dai","key":"10.1016\/j.engappai.2020.104025_b3"},{"key":"10.1016\/j.engappai.2020.104025_b4","doi-asserted-by":"crossref","first-page":"155926","DOI":"10.1109\/ACCESS.2020.3018868","article-title":"Interpretation and analysis of target scattering from fully-polarized ISAR images using Pauli decomposition scheme for target recognition","volume":"8","author":"Demirci","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2020.104025_b5","doi-asserted-by":"crossref","unstructured":"Duan, Kaiwen, Bai, Song, Xie, Lingxi, et al., 2019. CenterNet: Keypoint triplets for object detection. In: 2019 IEEE International Conference on Computer Vision, Seoul, Korea, South, Oct. pp. 1\u201310.","DOI":"10.1109\/ICCV.2019.00667"},{"year":"2018","series-title":"Object detection with mask-based feature encoding","author":"Fan","key":"10.1016\/j.engappai.2020.104025_b6"},{"key":"10.1016\/j.engappai.2020.104025_b7","doi-asserted-by":"crossref","unstructured":"Fan, Qi, Zhuo, Wei, et al., 2020. Few-shot object detection with attention-RPN and multi-relation detector. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 1\u201316.","DOI":"10.1109\/CVPR42600.2020.00407"},{"issue":"11","key":"10.1016\/j.engappai.2020.104025_b8","doi-asserted-by":"crossref","first-page":"9893","DOI":"10.1109\/TIE.2019.2956418","article-title":"Salient object detection by spatiotemporal and semantic features in real-time video processing systems","volume":"67","author":"Fang","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"first-page":"1","year":"2017","series-title":"DSSD : Deconvolutional single shot detector","author":"Fu","key":"10.1016\/j.engappai.2020.104025_b9"},{"key":"10.1016\/j.engappai.2020.104025_b10","doi-asserted-by":"crossref","unstructured":"Girshick, Ross, 2015. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision, ICCV, Santiago, Chile, Dec, pp. 1\u20139.","DOI":"10.1109\/ICCV.2015.169"},{"key":"10.1016\/j.engappai.2020.104025_b11","doi-asserted-by":"crossref","unstructured":"Girshick, Ross, Donahue, Jeff, Darrell, Trevor, et al., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, June, pp. 1\u20138.","DOI":"10.1109\/CVPR.2014.81"},{"issue":"2","key":"10.1016\/j.engappai.2020.104025_b12","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1109\/TPAMI.2018.2844175","article-title":"Mask R-CNN","volume":"42","author":"He","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2020.104025_b13","series-title":"Cie International Conference on Radar","first-page":"1","article-title":"Automatic recognition of ISAR images based on deep learning","author":"He","year":"2017"},{"issue":"9","key":"10.1016\/j.engappai.2020.104025_b14","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.engappai.2020.104025_b15","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1109\/JIOT.2017.2705560","article-title":"IoT-Driven automated object detection algorithm for urban surveillance systems in smart cities","volume":"5","author":"Hu","year":"2018","journal-title":"IEEE Internet Things J."},{"issue":"5","key":"10.1016\/j.engappai.2020.104025_b16","doi-asserted-by":"crossref","first-page":"3681","DOI":"10.1109\/JIOT.2020.2967788","article-title":"Blockchain-enabled cross-domain object detection for autonomous driving: A model sharing approach","volume":"7","author":"Jiang","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"99","key":"10.1016\/j.engappai.2020.104025_b17","first-page":"1","article-title":"A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection","volume":"PP","author":"Jiao","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2020.104025_b18","doi-asserted-by":"crossref","unstructured":"Ke, Wei, Zhang, Tianliang, Huang, Zeyi, et al., 2020. Multiple anchor learning for visual object detection. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 1\u201310.","DOI":"10.1109\/CVPR42600.2020.01022"},{"key":"10.1016\/j.engappai.2020.104025_b19","doi-asserted-by":"crossref","unstructured":"Kim, Jongwoo, Candemir, Sema, Chew, Emily\u00a0Y., et al., 2018. Region of interest detection in fundus images using deep learning and blood vessel information. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems, CBMS, Karlstad, Sweden, pp. 357\u2013362.","DOI":"10.1109\/CBMS.2018.00069"},{"first-page":"1","year":"2019","series-title":"Spiking-YOLO: Spiking neural network for real-time object detection","author":"Kim","key":"10.1016\/j.engappai.2020.104025_b20"},{"key":"10.1016\/j.engappai.2020.104025_b21","doi-asserted-by":"crossref","unstructured":"Kong, Tao, Sun, Fuchun, Yao, Anbang, et al., 2017. RON: Reverse connection with objectness prior networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 1\u201310.","DOI":"10.1109\/CVPR.2017.557"},{"first-page":"1","year":"2017","series-title":"Light-head R-CNN: In defense of two-stage object detector","author":"Li","key":"10.1016\/j.engappai.2020.104025_b22"},{"first-page":"1","year":"2016","series-title":"Feature pyramid networks for object detection","author":"Lin","key":"10.1016\/j.engappai.2020.104025_b23"},{"issue":"2","key":"10.1016\/j.engappai.2020.104025_b24","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1109\/TPAMI.2018.2858826","article-title":"Focal loss for dense object detection","volume":"42","author":"Lin","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2020.104025_b25","doi-asserted-by":"crossref","unstructured":"Liu, Wei, Anguelov, Dragomir, Erhan, Dumitru, et al., 2016. SSD: Single Shot MultiBox Detector. Amsterdam, The Netherlands, Oct, pp. 1-17.","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"10.1016\/j.engappai.2020.104025_b26","doi-asserted-by":"crossref","unstructured":"Liu, Zhidong, Li, Kaiming, Luo, Ying, et al., 2020a. An Anti-jamming method against frequency diverse array for ISAR by spatial location feature recognition. In: 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, SAM, Hangzhou, China, pp. 1\u20134.","DOI":"10.1109\/SAM48682.2020.9104297"},{"first-page":"1","year":"2020","series-title":"Cbnet: A novel composite backbone network architecture for object detection","author":"Liu","key":"10.1016\/j.engappai.2020.104025_b27"},{"key":"10.1016\/j.engappai.2020.104025_b28","doi-asserted-by":"crossref","unstructured":"Mallika, H., Krishnan, Abhijith, Manoj, Milind\u00a0M., et al., 2018. Software pipeline for vehicle detection and tracking using CNN. In: 2018 3rd International Conference on Circuits, Control, Communication and Computing, I4C, Bangalore, India, pp. 1\u20135.","DOI":"10.1109\/CIMCA.2018.8739754"},{"key":"10.1016\/j.engappai.2020.104025_b29","doi-asserted-by":"crossref","unstructured":"Mishra, Alka, Yadav, Pradeep, 2020. IRNN-GDX: An improved random neural network using GDX for Intrusion Detection Systems. In: 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, pp. 1\u20138.","DOI":"10.1109\/IDEA49133.2020.9170697"},{"key":"10.1016\/j.engappai.2020.104025_b30","doi-asserted-by":"crossref","unstructured":"Morozov, O.G., Agliullin, T.A., Gubaidullin, R.R., et al., 2020. Modeling of microwave-photonic system for assessing the tangential component of tire deformation. In: 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF, Saint-Petersburg, Russia, pp. 1\u20137.","DOI":"10.1109\/WECONF48837.2020.9131541"},{"key":"10.1016\/j.engappai.2020.104025_b31","doi-asserted-by":"crossref","unstructured":"Neri, Julian, Badeau, Roland, Depalle, Philippe, 2020. Probabilistic filter and smoother for variational inference of bayesian linear dynamical systems. In : ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Barcelona, Spain, pp. 5885\u20135889.","DOI":"10.1109\/ICASSP40776.2020.9054206"},{"key":"10.1016\/j.engappai.2020.104025_b32","doi-asserted-by":"crossref","unstructured":"Nguyen, Duc, Choi, Seonghwa, Kim, Woojae, et al., 2019. GraphX-Convolution for point cloud deformation in 2D-to-3D conversion. In: 2019 IEEE\/CVF International Conference on Computer Vision, ICCV, Seoul, Korea, South, pp. 1\u20139.","DOI":"10.1109\/ICCV.2019.00872"},{"key":"10.1016\/j.engappai.2020.104025_b33","doi-asserted-by":"crossref","unstructured":"Nuari, Reflan, Utami, Ema, Raharjo, Suwanto, 2019. Comparison of scale invariant feature transform and speed up robust feature for image forgery detection copy move. In: 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE, Yogyakarta, Indonesia, pp. 107\u2013112.","DOI":"10.1109\/ICITISEE48480.2019.9003761"},{"issue":"2","key":"10.1016\/j.engappai.2020.104025_b34","doi-asserted-by":"crossref","first-page":"2914","DOI":"10.1109\/TMI.2019.2918096","article-title":"Adaptive feature recombination and recalibration for semantic segmentation with fully convolutional networks","volume":"38","author":"Pereira","year":"2019","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.engappai.2020.104025_b35","doi-asserted-by":"crossref","first-page":"5367","DOI":"10.1109\/TIP.2020.2982260","article-title":"Practically lossless affine image transformation","volume":"29","author":"Pflugfelder","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2020.104025_b36","doi-asserted-by":"crossref","first-page":"2947","DOI":"10.1109\/TIP.2019.2955239","article-title":"Notice of violation of IEEE publication principles: Recent advances in 3D object detection in the era of deep neural networks: A survey","volume":"29","author":"Rahman","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2020.104025_b37","doi-asserted-by":"crossref","unstructured":"Redmon, Joseph, Divvala, Santosh, Girshick, Ross, et al., 2016. You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 1\u201310.","DOI":"10.1109\/CVPR.2016.91"},{"issue":"6","key":"10.1016\/j.engappai.2020.104025_b38","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2020.104025_b39","doi-asserted-by":"crossref","unstructured":"Shen, Zhiqiang, Liu, Zhuang, Li, Jianguo, et al., 2017. DSOD: Learning deeply supervised object detectors from scratch. Venice, Italy, Oct, pp. 1\u201311.","DOI":"10.1109\/ICCV.2017.212"},{"key":"10.1016\/j.engappai.2020.104025_b40","doi-asserted-by":"crossref","unstructured":"Talmi, Itamar, Mechrez, Roey, Zelnik-Manor, Lihi, 2017. Template matching with deformable diversity similarity. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, pp. 1311\u20131319.","DOI":"10.1109\/CVPR.2017.144"},{"key":"10.1016\/j.engappai.2020.104025_b41","doi-asserted-by":"crossref","unstructured":"Tan, Mingxing, Pang, Ruoming, Le, Quoc\u00a0V., et al., 2020. EfficientDet: Scalable and efficient object detection. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, USA, Dec, pp. 1\u201310.","DOI":"10.1109\/CVPR42600.2020.01079"},{"issue":"3","key":"10.1016\/j.engappai.2020.104025_b42","doi-asserted-by":"crossref","first-page":"1174","DOI":"10.1109\/TGRS.2014.2335751","article-title":"Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine","volume":"53","author":"Tang","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"99","key":"10.1016\/j.engappai.2020.104025_b43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2020.3006757","article-title":"Block-Gaussian-mixture priors for hyperspectral denoising and inpainting","volume":"PP","author":"Teodoro","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2020.104025_b44","doi-asserted-by":"crossref","unstructured":"Wang, Zijie, Chang, Huiyou, 2019. 3D Mesh deformation using graph convolution network. In: 2019 IEEE 4th International Conference on Computer and Communication Systems, ICCCS, Singapore, 2019, pp. 375\u2013378.","DOI":"10.1109\/CCOMS.2019.8821790"},{"key":"10.1016\/j.engappai.2020.104025_b45","doi-asserted-by":"crossref","unstructured":"Wu, Chong, Zhang, Le, Zhang, Houwang, et al., 2019. Improved superpixel-based fast fuzzy C-means clustering for image segmentation. In: 2019 IEEE International Conference on Image Processing, ICIP, Taipei, Taiwan, China, pp. 1455\u20131459.","DOI":"10.1109\/ICIP.2019.8803039"},{"issue":"3","key":"10.1016\/j.engappai.2020.104025_b46","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1109\/JSEN.2018.2879669","article-title":"DIOD: Fast, semi-supervised deep ISAR object detection","volume":"19","author":"Xue","year":"2019","journal-title":"IEEE Sens. J."},{"issue":"11","key":"10.1016\/j.engappai.2020.104025_b47","doi-asserted-by":"crossref","first-page":"3991","DOI":"10.1109\/TCYB.2018.2856821","article-title":"DIOD: Fast and efficient weakly semi-supervised deep complex ISAR object detection","volume":"49","author":"Xue","year":"2019","journal-title":"IEEE Trans. Cybern."},{"issue":"10","key":"10.1016\/j.engappai.2020.104025_b48","doi-asserted-by":"crossref","first-page":"4256","DOI":"10.1109\/TCYB.2019.2933224","article-title":"Real-world ISAR object recognition using deep multimodal relation learning","volume":"50","author":"Xue","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.engappai.2020.104025_b49","unstructured":"Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations 2016, Caribe Hilton, San Juan, Puerto Rico."},{"first-page":"636","year":"2017","series-title":"Dilated residual networks","author":"Yu","key":"10.1016\/j.engappai.2020.104025_b50"},{"key":"10.1016\/j.engappai.2020.104025_b51","doi-asserted-by":"crossref","unstructured":"Zhou, Peng, Ni, Bingbing, et al., 2018. Scale-transferrable object detection. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 1\u201310.","DOI":"10.1109\/CVPR.2018.00062"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197620303067?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197620303067?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,30]],"date-time":"2020-11-30T16:46:55Z","timestamp":1606754815000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197620303067"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":51,"alternative-id":["S0952197620303067"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.engappai.2020.104025","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Complex ISAR target recognition using deep adaptive learning","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2020.104025","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104025"}}