{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:04:32Z","timestamp":1732043072463,"version":"3.28.0"},"reference-count":149,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T00:00:00Z","timestamp":1697587200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Ecological Informatics"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.ecoinf.2023.102333","type":"journal-article","created":{"date-parts":[[2023,10,11]],"date-time":"2023-10-11T05:25:30Z","timestamp":1697001930000},"page":"102333","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Enhancing Land Cover\/Land Use (LCLU) classification through a comparative analysis of hyperparameters optimization approaches for deep neural network (DNN)"],"prefix":"10.1016","volume":"78","author":[{"given":"Ali","family":"Azedou","sequence":"first","affiliation":[]},{"given":"Aouatif","family":"Amine","sequence":"additional","affiliation":[]},{"given":"Isaya","family":"Kisekka","sequence":"additional","affiliation":[]},{"given":"Said","family":"Lahssini","sequence":"additional","affiliation":[]},{"given":"Youness","family":"Bouziani","sequence":"additional","affiliation":[]},{"given":"Said","family":"Moukrim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ecoinf.2023.102333_bb0005","series-title":"Annales de la recherche foresti\u00e8re au Maroc. Centre national de la recherche foresti\u00e8re","first-page":"62","article-title":"Etude et cartographie des groupements v\u00e9g\u00e9taux du Parc Naturel de Talassemtane","author":"Aafi","year":"1997"},{"year":"2006","series-title":"Les ressources en eau au niveau de la zone d\u2019action de l\u2019Agence du Bassin Hydraulique du Loukkos: Etat des lieux et perspectives de leur d\u00e9veloppement et leur sauvegarde","author":"ABHL","key":"10.1016\/j.ecoinf.2023.102333_bb0010"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0020","first-page":"381","article-title":"Land use land cover change detection and urban sprawl prediction for Kuwait metropolitan region, using multi-layer perceptron neural networks (MLPNN)","volume":"26","author":"Al-Dousari","year":"2023","journal-title":"Egypt. J. Remote Sens. Space Sci."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0025","doi-asserted-by":"crossref","first-page":"4034","DOI":"10.3390\/rs13204034","article-title":"Remote sensing-based urban sprawl modeling using multilayer perceptron neural network markov chain in Baghdad, Iraq","volume":"13","author":"Al-Hameedi","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0030","doi-asserted-by":"crossref","DOI":"10.1155\/2017\/5681308","article-title":"Forecasting drought using multilayer perceptron artificial neural network model","volume":"2017","author":"Ali","year":"2017","journal-title":"Adv. Meteorol."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0035","doi-asserted-by":"crossref","first-page":"82249","DOI":"10.1109\/ACCESS.2021.3085855","article-title":"Improving the performance of deep neural networks using two proposed activation functions","volume":"9","author":"Alkhouly","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.ecoinf.2023.102333_bib878","first-page":"1","article-title":"Analyzing the effect size of urban growth driving factors: application of multilayer-perceptron Markov-chain model for the Riyadh city","author":"Al-Shaar","year":"2023","journal-title":"Model. Earth Syst. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0040","doi-asserted-by":"crossref","first-page":"5326","DOI":"10.1109\/JSTARS.2020.3021052","article-title":"Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review","volume":"13","author":"Amani","year":"2020","journal-title":"IEEE J. Select. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0045","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1007\/s12371-019-00347-4","article-title":"The geological heritage of the talassemtane national Park and the Ghomara coast Natural Area (NW of Morocco)","volume":"11","author":"Aoulad-Sidi-Mhend","year":"2019","journal-title":"Geoheritage"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0050","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1080\/10106049.2016.1206974","article-title":"Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas","volume":"32","author":"Avtar","year":"2017","journal-title":"Geocarto Int."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.102333_bb0055","doi-asserted-by":"crossref","first-page":"682","DOI":"10.3390\/su13020682","article-title":"A methodological comparison of three models for gully erosion susceptibility mapping in the rural municipality of El Faid (Morocco)","volume":"13","author":"Azedou","year":"2021","journal-title":"Sustainability"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0060","article-title":"Characterizing fluvial geomorphological change using Google Earth Engine (GEE) to support sustainable flood management in the rural municipality of El Faid","volume":"15","author":"Azedou","year":"2022","journal-title":"Arab. J. Geosci."},{"key":"10.1016\/j.ecoinf.2023.102333_bib874","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10661-021-08915-4","article-title":"Monitoring and predicting regional land use and land cover changes in an estuarine landscape of India","volume":"193","author":"Bagaria","year":"2021","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0065","doi-asserted-by":"crossref","first-page":"329","DOI":"10.3390\/f9060329","article-title":"Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal","volume":"9","author":"Baniya","year":"2018","journal-title":"Forests"},{"year":"2008","series-title":"Flore et V\u00e9g\u00e9tation du Parc National de Talassemtane (Catalogue et base de donn\u00e9es num\u00e9riques)","author":"Benabid","key":"10.1016\/j.ecoinf.2023.102333_bb0070"},{"volume":"21","first-page":"588","year":"2021","author":"Benbriqa","key":"10.1016\/j.ecoinf.2023.102333_bib864"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.foreco.2021.119967","article-title":"Spatial patterns and species coexistence in mixed Abies marocana-Cedrus atlantica forest in Talassemtane National Park","volume":"506","author":"Ben-Said","year":"2022","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0080","first-page":"281","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"Bergstra","year":"2012","journal-title":"J. Mach. Learn. Res."},{"year":"2007","series-title":"Visite du Parc national de Talassemtane R\u00e9gion du Rif, Maroc, juin 2006","author":"Bosshardt","key":"10.1016\/j.ecoinf.2023.102333_bb0095"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0100","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/j.enbuild.2019.07.026","article-title":"Multi-channel low-cost light spectrum measurement using a multilayer perceptron","volume":"199","author":"Botero-Valencia","year":"2019","journal-title":"Energ. Build."},{"year":"1998","series-title":"Etude de l\u2019\u00e9volution de la gestion de la sapini\u00e8re de Talassemtane (Rif centro-occidental, Maroc)","author":"Boukil","key":"10.1016\/j.ecoinf.2023.102333_bb0105"},{"key":"10.1016\/j.ecoinf.2023.102333_bib868","series-title":"Digital economy, business analytics, and big data analytics applications","first-page":"55","article-title":"Machine learning and deep learning applications for solar radiation predictions review: morocco as a case of study","author":"Boutahir","year":"2022"},{"issue":"1","key":"10.1016\/j.ecoinf.2023.102333_bib854","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1038\/s41597-022-01307-4","article-title":"Dynamic World, Near real-time global 10 m land use land cover mapping","volume":"9","author":"Brown","year":"2022","journal-title":"Scientific Data"},{"issue":"13","key":"10.1016\/j.ecoinf.2023.102333_bib851","doi-asserted-by":"crossref","first-page":"1600","DOI":"10.3390\/rs11131600","article-title":"A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2\/PALSAR-2 polarimetric images","volume":"11","author":"Camargo","year":"2019","journal-title":"Remote Sens."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.102333_bib859","doi-asserted-by":"crossref","DOI":"10.1002\/eap.2208","article-title":"Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series","volume":"31","author":"Caughlin","year":"2021","journal-title":"Ecol. Appl."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0110","doi-asserted-by":"crossref","first-page":"768","DOI":"10.3390\/rs11070768","article-title":"Chimera: a multi-task recurrent convolutional neural network for forest classification and structural estimation","volume":"11","author":"Chang","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0115","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.rse.2013.12.016","article-title":"A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost","volume":"143","author":"Chasmer","year":"2014","journal-title":"Remote Sens. Environ."},{"year":"2023","series-title":"Accuracy assessment and uncertainty of the 10 meter resolution land use land cover maps at local scale","author":"Chemchaoui","key":"10.1016\/j.ecoinf.2023.102333_bb0120"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.catena.2023.107200","article-title":"Land use\/land cover classification using hyperspectral soil reflectance features in the eastern Himalayas, India","volume":"229","author":"Choudhury","year":"2023","journal-title":"CATENA"},{"year":"2016","series-title":"Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)","author":"Clevert","key":"10.1016\/j.ecoinf.2023.102333_bb0130"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.jastp.2021.105733","article-title":"Spatiotemporal climatic analysis in Pernambuco State, Northeast Brazil","volume":"223","author":"da Jardim","year":"2021","journal-title":"J. Atmos. Sol. Terr. Phys."},{"issue":"26","key":"10.1016\/j.ecoinf.2023.102333_bib875","doi-asserted-by":"crossref","first-page":"68450","DOI":"10.1007\/s11356-023-27153-4","article-title":"Modeling LULC using Multi-Layer Perceptron Markov change (MLP-MC) and identifying local drivers of LULC in hilly district of Manipur, India","volume":"30","author":"Devi","year":"2023","journal-title":"Environ. Sci. Pollut. Res."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0145","article-title":"Effectiveness of the integration of data balancing techniques and tree-based ensemble machine learning algorithms for spatially-explicit land cover accuracy prediction","volume":"27","author":"Ebrahimy","year":"2022","journal-title":"Remote Sens. Appl. Soc. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0150","doi-asserted-by":"crossref","first-page":"1868","DOI":"10.1080\/17538947.2021.1980125","article-title":"Deep neural network ensembles for remote sensing land cover and land use classification","volume":"14","author":"Ekim","year":"2021","journal-title":"Int. J. Digital Earth"},{"year":"1981","series-title":"La terre et l\u2019homme dans la p\u00e9ninsule tingitane: \u00e9tude sur l\u2019homme et le milieu naturel dans le Rif Occidental","author":"El Gharbaoui","key":"10.1016\/j.ecoinf.2023.102333_bb0155"},{"year":"2022","series-title":"Using Machine Learning Approaches to Predict Water","author":"El Mustapha Azzirgue","key":"10.1016\/j.ecoinf.2023.102333_bib869"},{"issue":"6","key":"10.1016\/j.ecoinf.2023.102333_bib852","doi-asserted-by":"crossref","first-page":"1034","DOI":"10.3390\/rs12061034","article-title":"Accounting for training data error in machine learning applied to Earth observations","volume":"12","author":"Elmes","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0160","article-title":"Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: a study based on Sentinel-2, Google earth and field data","volume":"70","author":"Eskandari","year":"2022","journal-title":"Eco. Inform."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0165","doi-asserted-by":"crossref","first-page":"9077","DOI":"10.1038\/s41598-022-11396-1","article-title":"Integrated usage of historical geospatial data and modern satellite images reveal long-term land use\/cover changes in Bursa\/Turkey, 1858\u20132020","volume":"12","author":"Ettehadi Osgouei","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.envc.2021.100192","article-title":"Assessing and predicting land use\/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area","volume":"4","author":"Faisal","year":"2021","journal-title":"Environ. Challenge."},{"article-title":"Combining hyperband and bayesian optimization","year":"2017","series-title":"NIPS 2017 Bayesian Optimization Workshop (Dec 2017)","author":"Falkner","key":"10.1016\/j.ecoinf.2023.102333_bb0175"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0180","series-title":"Proceedings of the 35th International Conference on Machine Learning","first-page":"1437","article-title":"BOHB: robust and efficient hyperparameter optimization at scale","author":"Falkner","year":"2018"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0190","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.ecoser.2018.03.009","article-title":"Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China","volume":"31","author":"Fei","year":"2018","journal-title":"Ecosyst. Serv."},{"key":"10.1016\/j.ecoinf.2023.102333_bib866","series-title":"GISTAM 2023 9th International Conference on Geographical Information Systems Theory, Applications and Management","first-page":"15","article-title":"Spatio-temporal modelling of relationship between Organic Carbon Content and Land Use using Deep Learning approach and several covariables: application to the soils of the Beni Mellal in Morocco","volume":"1","author":"Gadal","year":"2023"},{"issue":"14\u201315","key":"10.1016\/j.ecoinf.2023.102333_bib857","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","article-title":"Artificial neural networks (the multilayer perceptron)\u2014a review of applications in the atmospheric sciences","volume":"32","author":"Gardner","year":"1998","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0210","series-title":"Architecture optimization and training for the multilayer perceptron using ant system","first-page":"20","volume":"43","author":"Ghanou","year":"2016"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0215","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S0034-4257(96)00072-7","article-title":"Use of a green channel in remote sensing of global vegetation from EOS-MODIS","volume":"58","author":"Gitelson","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0225","series-title":"Remote Sensing for Agriculture, Ecosystems, and Hydrology V","first-page":"110","article-title":"Estimation of crop coefficients by means of optimized vegetation indices for corn","author":"Gonzalez-Piqueras","year":"2004"},{"year":"2016","series-title":"Deep Learning","author":"Goodfellow","key":"10.1016\/j.ecoinf.2023.102333_bb0230"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0235","series-title":"Machine Learning in Bio-Signal Analysis and Diagnostic Imaging","first-page":"159","article-title":"Chapter 7 - optimization of ANN architecture: A review on nature-inspired techniques","author":"Gupta","year":"2019"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0240","doi-asserted-by":"crossref","first-page":"2855","DOI":"10.1007\/s11063-020-10234-7","article-title":"Optimizing deep neural network architecture: a Tabu search based approach","volume":"51","author":"Gupta","year":"2020","journal-title":"Neural. Process. Lett."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0250","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1080\/22797254.2017.1417745","article-title":"Estimating defoliation of scots pine stands using machine learning methods and vegetation indices of Sentinel-2","volume":"51","author":"Hawry\u0142o","year":"2018","journal-title":"Eur. J. Remote Sens."},{"issue":"10","key":"10.1016\/j.ecoinf.2023.102333_bib863","first-page":"1667","article-title":"Object detection and image segmentation with deep learning on earth observation data: A review-part","volume":"12","author":"Hoeser","year":"2020","journal-title":"Evolution and recent trends. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0255","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.isprsjprs.2020.02.019","article-title":"Conterminous United States land cover change patterns 2001\u20132016 from the 2016 National Land Cover Database","volume":"162","author":"Homer","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0260","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1007\/s41748-023-00343-3","article-title":"Two-speed deep-learning Ensemble for Classification of incremental land-cover satellite image patches","volume":"7","author":"Horry","year":"2023","journal-title":"Earth Syst. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0265","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A soil-adjusted vegetation index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0270","doi-asserted-by":"crossref","first-page":"166","DOI":"10.3390\/rs8030166","article-title":"First experience with Sentinel-2 data for crop and tree species classifications in Central Europe","volume":"8","author":"Immitzer","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0275","doi-asserted-by":"crossref","first-page":"12356","DOI":"10.3390\/rs70912356","article-title":"Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery","volume":"7","author":"Inglada","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0280","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.isprsjprs.2019.01.011","article-title":"DuPLO: a DUal view point deep learning architecture for time series classificatiOn","volume":"149","author":"Interdonato","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0285","article-title":"An evaluation of guided regularized random Forest for classification and regression tasks in remote sensing","volume":"88","author":"Izquierdo-Verdiguier","year":"2020","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"year":"2015","series-title":"Non-Stochastic Best Arm Identification and Hyperparameter Optimization","author":"Jamieson","key":"10.1016\/j.ecoinf.2023.102333_bb0290"},{"year":"2018","series-title":"Contribution \u00e0 l\u2019inventaire de la flore bryophytique d\u2019akchour dans la region de Chefchaouen, Nord du Maroc","author":"Jamila","key":"10.1016\/j.ecoinf.2023.102333_bb0295"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0305","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.107933","article-title":"Analyzing ecological environment change and associated driving factors in China based on NDVI time series data","volume":"129","author":"Jiang","year":"2021","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.ecoinf.2023.102333_bib853","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.apgeog.2015.12.006","article-title":"Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use\/land cover (LULC) mapping: case study of the Laguna de Bay area of the Philippines","volume":"67","author":"Johnson","year":"2016","journal-title":"Appl. Geograph."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0310","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.3390\/rs11141713","article-title":"Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use\/land cover classification","volume":"11","author":"Jozdani","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0315","article-title":"Modeling the relationship between land use\/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm","volume":"4","author":"Kafy","year":"2021","journal-title":"Environ. Challenge."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0325","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1080\/01431161.2015.1117685","article-title":"UAS imaging-based decision tools for arid winter wheat and irrigated potato production management","volume":"37","author":"Khot","year":"2016","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0330","series-title":"Computational Optimization, Methods and Algorithms","first-page":"61","article-title":"Derivative-free optimization","author":"Kramer","year":"2011"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0340","doi-asserted-by":"crossref","first-page":"1454","DOI":"10.1016\/j.procs.2023.01.124","article-title":"Deep residual SVM: a hybrid learning approach to obtain high discriminative feature for land use and land cover classification","volume":"218","author":"Kumari","year":"2023","journal-title":"Proc. Comp. Sci."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0350","doi-asserted-by":"crossref","first-page":"159","DOI":"10.2307\/2529310","article-title":"The measurement of observer agreement for categorical data","volume":"33","author":"Landis","year":"1977","journal-title":"Biometrics"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0360","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"Lecun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.ecoinf.2023.102333_bib855","series-title":"Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium","first-page":"114","article-title":"Overfitting and neural networks: conjugate gradient and backpropagation","volume":"1","author":"Lawrence","year":"2000"},{"year":"2018","series-title":"Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization","author":"Li","key":"10.1016\/j.ecoinf.2023.102333_bb0370"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0375","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.isprsjprs.2020.06.021","article-title":"Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion","volume":"166","author":"Li","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0380","doi-asserted-by":"crossref","first-page":"699","DOI":"10.3390\/rs14030699","article-title":"Large-scale rice mapping using multi-task spatiotemporal deep learning and Sentinel-1 SAR time series","volume":"14","author":"Lin","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0390","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1109\/JAS.2020.1003396","article-title":"Efficient and high-quality recommendations via momentum-incorporated parallel stochastic gradient descent-based learning","volume":"8","author":"Luo","year":"2021","journal-title":"IEEE\/CAA J. Autom Sinica"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0395","doi-asserted-by":"crossref","first-page":"506","DOI":"10.3390\/rs8060506","article-title":"Learning a transferable change rule from a recurrent neural network for land cover change detection","volume":"8","author":"Lyu","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0400","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.isprsjprs.2019.04.015","article-title":"Deep learning in remote sensing applications: a meta-analysis and review","volume":"152","author":"Ma","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0405","doi-asserted-by":"crossref","first-page":"1901","DOI":"10.1002\/ldr.4272","article-title":"Spatial heterogeneity of ecosystem services in response to landscape patterns under the grain for green program: a case-study in Kaihua County, China","volume":"33","author":"Ma","year":"2022","journal-title":"Land Degrad. Dev."},{"issue":"9","key":"10.1016\/j.ecoinf.2023.102333_bib865","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1007\/s10661-023-11680-1","article-title":"Predicting potential reforestation areas by Quercus ilex (L.) species using machine learning algorithms: case of upper Ziz, southeastern Morocco","volume":"195","author":"Manaouch","year":"2023","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0410","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112600","article-title":"Spatial and temporal deep learning methods for deriving land-use following deforestation: a pan-tropical case study using Landsat time series","volume":"264","author":"Masolele","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0415","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1016\/j.pecs.2008.01.001","article-title":"Artificial intelligence techniques for photovoltaic applications: a review","volume":"34","author":"Mellit","year":"2008","journal-title":"Prog. Energy Combust. Sci."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0425","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/11\/11\/113002","article-title":"Land use change and ecosystem service provision in pampas and Campos grasslands of southern South America","volume":"11","author":"Modernel","year":"2016","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0440","article-title":"Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image","volume":"29","author":"Mollick","year":"2023","journal-title":"Remote Sens. Appl. Soc. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0445","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1071\/RJ17119","article-title":"Local community involvement in forest rangeland management: case study of compensation on forest area closed to grazing in Morocco","volume":"41","author":"Moukrim","year":"2018","journal-title":"Rangel. J."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0475","doi-asserted-by":"crossref","first-page":"994","DOI":"10.3390\/land10090994","article-title":"A synthesis of land use\/land cover studies: definitions, classification systems, meta-studies, challenges and knowledge gaps on a global landscape","volume":"10","author":"Nedd","year":"2021","journal-title":"Land"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0480","doi-asserted-by":"crossref","first-page":"2782","DOI":"10.3390\/rs6042782","article-title":"An automated approach to map the history of Forest disturbance from insect mortality and harvest with landsat time-series data","volume":"6","author":"Neigh","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bib872","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.ecoinf.2017.10.012","article-title":"Trajectory analysis of informal Sand forest harvesting using Markov chain, within Maputaland, Northern KwaZulu-Natal","volume":"42","author":"Nel","year":"2017","journal-title":"Ecol. Informatics"},{"issue":"4","key":"10.1016\/j.ecoinf.2023.102333_bib858","doi-asserted-by":"crossref","first-page":"808","DOI":"10.3390\/rs13040808","article-title":"Deep learning-based semantic segmentation of urban features in satellite images: a review and meta-analysis","volume":"13","author":"Neupane","year":"2021","journal-title":"Remote Sens."},{"first-page":"5","year":"2010","series-title":"DEVELOPMENT OF NEW VEGETATION INDEXES, SHADOW INDEX (SI) AND WATER STRESS TREND (WST)","author":"Ono","key":"10.1016\/j.ecoinf.2023.102333_bb0485"},{"key":"10.1016\/j.ecoinf.2023.102333_bib870","doi-asserted-by":"crossref","first-page":"3874","DOI":"10.3390\/su15053874","article-title":"Spatial Prediction of Groundwater Withdrawal Potential Using Shallow, Hybrid, and Deep Learning Algorithms in the Toudgha Oasis, Southeast Morocco","volume":"15.5","author":"Ouali","year":"2023","journal-title":"Sustainability"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0500","doi-asserted-by":"crossref","first-page":"523","DOI":"10.3390\/rs11050523","article-title":"Temporal convolutional neural network for the classification of satellite image time series","volume":"11","author":"Pelletier","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0525","article-title":"Evaluation and comparison of the earth observing sensors in land cover\/land use studies using machine learning algorithms","volume":"68","author":"Prasad","year":"2022","journal-title":"Eco. Inform."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0530","article-title":"Evaluation and comparison of the earth observing sensors in land cover\/land use studies using machine learning algorithms","volume":"68","author":"Prasad","year":"2022","journal-title":"Eco. Inform."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0535","article-title":"Probabilistic coastal wetland mapping with integration of optical, SAR and hydro-geomorphic data through stacking ensemble machine learning model","volume":"77","author":"Prasad","year":"2023","journal-title":"Eco. Inform."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.102333_bib861","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13617-018-0074-0","article-title":"Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project","volume":"7","author":"Pritchard","year":"2018","journal-title":"J. Appl. Volcanol."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0540","article-title":"Use of Sentinel-2 for forest classification in Mediterranean environments","volume":"42","author":"Puletti","year":"2018","journal-title":"Ann. Silvicult. Res."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0550","article-title":"Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use\/land cover mapping using sentinel 2 bands","volume":"19","author":"Rana","year":"2020","journal-title":"Remote Sens. Appl. Soc. Environ."},{"first-page":"208","year":"2008","series-title":"Parc National de Talassemtane\u00a0: Evaluation de la biodiversit\u00e9 et suivi des habitats","author":"Rapport MEDA","key":"10.1016\/j.ecoinf.2023.102333_bb0555"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0565","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.sajb.2020.02.004","article-title":"Traditional medicinal knowledge of Apiaceae at Talassemtane National Park (Northern Morocco)","volume":"131","author":"Redouan","year":"2020","journal-title":"S. Afr. J. Bot."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0570","first-page":"39","article-title":"Tropical forest cover density mapping","volume":"43","author":"Rikimaru","year":"2002","journal-title":"Trop. Ecol."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0575","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1037\/h0042519","article-title":"The perceptron: a probabilistic model for information storage and organization in the brain","volume":"65","author":"Rosenblatt","year":"1958","journal-title":"Psychol. Rev."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0580","doi-asserted-by":"crossref","first-page":"1615","DOI":"10.1007\/s12524-022-01569-w","article-title":"Anthropogenic land use and land cover changes\u2014a review on its environmental consequences and climate change","volume":"50","author":"Roy","year":"2022","journal-title":"J. Indian Soc. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0585","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0590","series-title":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","first-page":"551","article-title":"Multi-temporal land cover classification with long short-term memory neural networks","volume":"XLII-1-W1","author":"Ru\u00dfwurm","year":"2017"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0595","doi-asserted-by":"crossref","first-page":"129","DOI":"10.3390\/ijgi7040129","article-title":"Multi-temporal land cover classification with sequential recurrent encoders","volume":"7","author":"Ru\u00dfwurm","year":"2018","journal-title":"ISPRS Int. J. Geo Inf."},{"key":"10.1016\/j.ecoinf.2023.102333_bib867","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1007\/s41324-020-00322-0","article-title":"Simulating spatial\u2013temporal urban growth of a Moroccan metropolitan using CA\u2013Markov model","volume":"28","author":"Saadani","year":"2020","journal-title":"Spatial Information Research"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0600","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1007\/s12371-020-00512-0","article-title":"Assessment of Geosites in northern Morocco: diversity and richness with potential for socioeconomic development","volume":"12","author":"Salhi","year":"2020","journal-title":"Geoheritage"},{"key":"10.1016\/j.ecoinf.2023.102333_bib873","doi-asserted-by":"crossref","first-page":"106914","DOI":"10.1016\/j.ecolind.2020.106914","article-title":"Understanding the dynamics of landscape of greater Sundarban area using multi-layer perceptron Markov chain and landscape statistics approach","volume":"121","author":"Sardar","year":"2021","journal-title":"Ecological Indicators"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0615","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.fcr.2019.03.015","article-title":"Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA","volume":"238","author":"Seo","year":"2019","journal-title":"Field Crop Res."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0625","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/j.procs.2018.10.434","article-title":"Investigation on land cover mapping capability of maximum likelihood classifier: a case study on North Canara, India","volume":"143","author":"Shivakumar","year":"2018","journal-title":"Proc. Comp. Sci."},{"article-title":"Practical Bayesian optimization of machine learning algorithms","year":"2012","series-title":"Advances in Neural Information Processing Systems","author":"Snoek","key":"10.1016\/j.ecoinf.2023.102333_bb0640"},{"issue":"19","key":"10.1016\/j.ecoinf.2023.102333_bib860","doi-asserted-by":"crossref","first-page":"4914","DOI":"10.3390\/rs14194914","article-title":"Hyperspectral reconnaissance: joint characterization of the spectral mixture residual delineates geologic unit boundaries in the White Mountains, CA","volume":"14","author":"Sousa","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0650","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Machine Learn. Res."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0655","doi-asserted-by":"crossref","first-page":"2133","DOI":"10.1080\/01431160802549278","article-title":"How many hidden layers and nodes?","volume":"30","author":"Stathakis","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0660","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1080\/01431161.2018.1516313","article-title":"Using long short-term memory recurrent neural network in land cover classification on Landsat and cropland data layer time series","volume":"40","author":"Sun","year":"2019","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0665","first-page":"225","article-title":"Contribution a l\u2019etude de la faune myrmecologique du parc national de talassemtane (nord du maroc): biodiversite, biogeographie et especes indicatrices","volume":"54","author":"Taheri","year":"2014","journal-title":"Bolet\u00edn. Soc. Entomol. Aragonesa"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0670","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.107612","article-title":"Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh","volume":"126","author":"Talukdar","year":"2021","journal-title":"Ecological Indicators"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0680","article-title":"MLAs land cover mapping performance across varying geomorphology with Landsat OLI-8 and minimum human intervention","volume":"61","author":"Tan","year":"2021","journal-title":"Eco. Inform."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0685","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.3390\/rs70201529","article-title":"Multilayer perceptron neural networks model for Meteosat second generation SEVIRI daytime cloud masking","volume":"7","author":"Taravat","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bib879","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.ecoinf.2018.05.009","article-title":"Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study","volume":"46","author":"Thach","year":"2018","journal-title":"Ecological informatics"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0695","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112679","article-title":"Deep machine learning with sentinel satellite data to map paddy rice production stages across West Java, Indonesia","volume":"265","author":"Thorp","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0700","series-title":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","first-page":"1055","article-title":"ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER \/ USE MAPPING","volume":"XLI-B8","author":"Topalo\u011flu","year":"2016"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0705","article-title":"A deep learning multi-layer perceptron and remote sensing approach for soil health based crop yield estimation","volume":"113","author":"Tripathi","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0710","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/978-1-4615-2025-2_2","article-title":"Complexity issues in global optimization: a survey","author":"Vavasis","year":"1995","journal-title":"Handbook Global Optimiz."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0715","doi-asserted-by":"crossref","first-page":"974","DOI":"10.1111\/j.1365-2486.2010.02307.x","article-title":"Challenges in using land use and land cover data for global change studies","volume":"17","author":"Verburg","year":"2011","journal-title":"Glob. Chang. Biol."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0720","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1007\/s12530-020-09345-2","article-title":"Automatic tuning of hyperparameters using Bayesian optimization","volume":"12","author":"Victoria","year":"2021","journal-title":"Evol. Syst."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0725","doi-asserted-by":"crossref","first-page":"471","DOI":"10.3390\/su13020471","article-title":"Prediction of land use and land cover changes in Mumbai City, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model","volume":"13","author":"Vinayak","year":"2021","journal-title":"Sustainability"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0735","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/S0167-9473(03)00140-3","article-title":"Statistical aspects of multilayer perceptrons under data limitations","volume":"46","author":"Walde","year":"2004","journal-title":"Comp. Stat. Data Anal."},{"year":"2012","series-title":"Detecting Vegetation Recovery Patterns after Hurricanes in South Florida Using NDVI Time Series","author":"Wang","key":"10.1016\/j.ecoinf.2023.102333_bb0740"},{"key":"10.1016\/j.ecoinf.2023.102333_bib862","doi-asserted-by":"crossref","first-page":"153559","DOI":"10.1016\/j.scitotenv.2022.153559","article-title":"Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects","volume":"822","author":"Wang","year":"2022","journal-title":"Sci. Total Environ."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.102333_bib871","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1080\/22797254.2017.1419831","article-title":"Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction","volume":"51","author":"Wang","year":"2018","journal-title":"European J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0745","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.3390\/rs10091468","article-title":"Evaluating the performance of Sentinel-2, Landsat 8 and Pl\u00e9iades-1 in mapping mangrove extent and species","volume":"10","author":"Wang","year":"2018","journal-title":"Remote Sens."},{"year":"2018","series-title":"Combination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep Learning","author":"Wang","key":"10.1016\/j.ecoinf.2023.102333_bb0750"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0765","article-title":"Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method","volume":"103","author":"Wu","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0770","doi-asserted-by":"crossref","first-page":"3025","DOI":"10.1080\/01431160600589179","article-title":"Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery","volume":"27","author":"Xu","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0775","doi-asserted-by":"crossref","DOI":"10.1002\/wat2.1533","article-title":"Machine learning for hydrologic sciences: an introductory overview","volume":"8","author":"Xu","year":"2021","journal-title":"Wiley Interdiscip. Rev. Water"},{"issue":"7","key":"10.1016\/j.ecoinf.2023.102333_bib877","doi-asserted-by":"crossref","first-page":"1074","DOI":"10.3390\/land11071074","article-title":"Integrating ANNs and cellular automata\u2013Markov chain to simulate urban expansion with annual land use data","volume":"11","author":"Xu","year":"2022","journal-title":"Land"},{"issue":"3","key":"10.1016\/j.ecoinf.2023.102333_bib876","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1080\/15481603.2018.1533680","article-title":"Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District","volume":"56","author":"Yang","year":"2019","journal-title":"GIScience & remote sensing"},{"key":"10.1016\/j.ecoinf.2023.102333_bib880","doi-asserted-by":"crossref","first-page":"101427","DOI":"10.1016\/j.ecoinf.2021.101427","article-title":"Identification of the most suitable afforestation sites by Juniperus excels specie using machine learning models: Firuzkuh semi-arid region, Iran","volume":"65","author":"Yousefi","year":"2021","journal-title":"Ecological Informatics"},{"year":"2020","series-title":"Hyper-Parameter Optimization: A Review of Algorithms and Applications.","author":"Yu","key":"10.1016\/j.ecoinf.2023.102333_bb0785"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0790","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111716","article-title":"Deep learning in environmental remote sensing: achievements and challenges","volume":"241","author":"Yuan","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0795","article-title":"Application of machine learning approaches for land cover monitoring in northern Cameroon","volume":"74","author":"Yuh","year":"2023","journal-title":"Eco. Inform."},{"year":"2009","series-title":"Random Search Algorithms","author":"Zabinsky","key":"10.1016\/j.ecoinf.2023.102333_bb0800"},{"key":"10.1016\/j.ecoinf.2023.102333_bb0810","doi-asserted-by":"crossref","first-page":"5843","DOI":"10.1109\/JSEN.2019.2904137","article-title":"A machine learning-based approach for land cover change detection using remote sensing and radiometric measurements","volume":"19","author":"Zerrouki","year":"2019","journal-title":"IEEE Sensors J."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0825","doi-asserted-by":"crossref","first-page":"952","DOI":"10.3390\/rs11080952","article-title":"Coastal wetland mapping with Sentinel-2 MSI imagery based on gravitational optimized multilayer perceptron and morphological attribute profiles","volume":"11","author":"Zhang","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0835","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.rse.2018.11.032","article-title":"Deep learning based multi-temporal crop classification","volume":"221","author":"Zhong","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0840","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1007\/s11119-017-9539-0","article-title":"Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean","volume":"19","author":"Zhou","year":"2018","journal-title":"Precis. Agric."},{"key":"10.1016\/j.ecoinf.2023.102333_bb0850","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4236\/ijg.2019.101001","article-title":"A review of researches on deep learning in remote sensing application","volume":"10","author":"Zhu","year":"2019","journal-title":"Int. J. Geosci."}],"container-title":["Ecological Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S157495412300362X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S157495412300362X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T15:23:56Z","timestamp":1730301836000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S157495412300362X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":149,"alternative-id":["S157495412300362X"],"URL":"https:\/\/doi.org\/10.1016\/j.ecoinf.2023.102333","relation":{},"ISSN":["1574-9541"],"issn-type":[{"type":"print","value":"1574-9541"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Enhancing Land Cover\/Land Use (LCLU) classification through a comparative analysis of hyperparameters optimization approaches for deep neural network (DNN)","name":"articletitle","label":"Article Title"},{"value":"Ecological Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ecoinf.2023.102333","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102333"}}