{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T20:35:05Z","timestamp":1726518905184},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Ecological Informatics"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.ecoinf.2022.101725","type":"journal-article","created":{"date-parts":[[2022,6,22]],"date-time":"2022-06-22T02:28:04Z","timestamp":1655864884000},"page":"101725","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":47,"special_numbering":"C","title":["A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images"],"prefix":"10.1016","volume":"70","author":[{"given":"Akshay","family":"Pandey","sequence":"first","affiliation":[]},{"given":"Kamal","family":"Jain","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ecoinf.2022.101725_bb0005","unstructured":"Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., & Citro, C. (n.d.). Tensorflow: large scale machine learning on heterogeneous distributed system. arXiv preprint."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0010","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.procs.2020.03.225","article-title":"ToLeD: tomato leaf disease detection using convolution neural network","volume":"167","author":"Agarwal","year":"2020","journal-title":"Proc. Comput. Sci."},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101725_bb0015","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1080\/00051144.2020.1728911","article-title":"Automated disease classification in (selected) agricultural crops using transfer learning","volume":"61","author":"Aravind","year":"2020","journal-title":"Automatika"},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101725_bb0020","first-page":"211","article-title":"Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features","volume":"15","author":"Arivazhagan","year":"2013","journal-title":"Agric Eng Int CIGR J."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoinf.2020.101182","article-title":"Plant leaf disease classification using EfficientNet deep learning model","volume":"61","author":"Atila","year":"2021","journal-title":"Ecol. Inform."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0030","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.biosystemseng.2016.01.017","article-title":"A review on the main challenges in automatic plant disease identification based on visible range images","volume":"144","author":"Barbedo","year":"2016","journal-title":"Biosyst. Eng."},{"issue":"11","key":"10.1016\/j.ecoinf.2022.101725_bb0035","doi-asserted-by":"crossref","first-page":"1922","DOI":"10.1364\/AO.47.001922","article-title":"Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy","volume":"47","author":"Belasque","year":"2008","journal-title":"Appl. Opt."},{"issue":"4","key":"10.1016\/j.ecoinf.2022.101725_bb0040","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1080\/08839514.2017.1315516","article-title":"Deep learning for tomato diseases: classification and symptoms visualization","volume":"31","author":"Brahimi","year":"2017","journal-title":"Appl. Artif. Intell."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0045","first-page":"1","article-title":"Foliar disease detection in the field using optical sensor fusion","volume":"VI","author":"Bravo","year":"2004","journal-title":"Agric. Eng. Int. CIGR J. Scient. Res. Dev."},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101725_bb0050","doi-asserted-by":"crossref","first-page":"365","DOI":"10.3390\/agronomy12020365","article-title":"Plant disease recognition model based on improved YOLOv5","volume":"12","author":"Chen","year":"2022","journal-title":"Agronomy"},{"author":"Department of Agriculture","key":"10.1016\/j.ecoinf.2022.101725_bb0055"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.105162","article-title":"Deep learning for classification and severity estimation of coffee leaf biotic stress","volume":"169","author":"Esgario","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101725_bb0065","doi-asserted-by":"crossref","DOI":"10.1117\/1.JEI.29.1.013004","article-title":"Crop leaf disease grade identification based on an improved convolutional neural network","volume":"29","author":"Fang","year":"2020","journal-title":"J. Electron. Imaging"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0070","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.compag.2018.01.009","article-title":"Deep learning models for plant disease detection and diagnosis","volume":"145","author":"Ferentinos","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0075","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","volume":"9","author":"Glorot","year":"2010","journal-title":"Proc. 13th Int. Conf. Artif. Intell. Statist."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0080","doi-asserted-by":"crossref","first-page":"5390","DOI":"10.1109\/ACCESS.2022.3141371","article-title":"Plant disease identification using a novel convolutional neural network","volume":"10","author":"Hassan","year":"2022","journal-title":"IEEE Access"},{"article-title":"Squeeze-and-excitation networks","year":"2018","series-title":"Proc. IEEE Conf. Comput. Vis. Pattern. Recognit","author":"Hu","key":"10.1016\/j.ecoinf.2022.101725_bb0085"},{"article-title":"Densely connected convolutional networks","year":"2017","series-title":"Proc. IEEE Conf. Comput. Vis. Pattern. Recognitt","author":"Huang","key":"10.1016\/j.ecoinf.2022.101725_bb0090"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoinf.2020.101197","article-title":"VirLeafNet: automatic analysis and viral disease diagnosis using deep-learning in Vigna mungo plant","volume":"61","author":"Joshi","year":"2021","journal-title":"Ecol. Inform."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0100","series-title":"Ecofriendly Pest Management for Food Security","first-page":"109","article-title":"Chapter 4 - parasitoids","author":"Kalyanasundaram","year":"2016"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0105","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105342","article-title":"SoyNet: soybean leaf diseases classification","volume":"172","author":"Karlekar","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0110","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1007\/s00034-019-01041-0","article-title":"Seasonal crops disease prediction and classification using deep convolutional encoder network","volume":"39","author":"Khamparla","year":"2020","journal-title":"Circuits Syst. Signal Process."},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101725_bb0115","first-page":"213","article-title":"An automated segmentation and classification model for banana leaf disease detection","volume":"10","author":"Krishnan","year":"2022","journal-title":"J. Appl. Biol. Biotechnol."},{"article-title":"ImageNet classification with deep convolutional neural network","year":"2012","series-title":"Neural Information Processing Systems","author":"Krizhevsky","key":"10.1016\/j.ecoinf.2022.101725_bb0120"},{"article-title":"Leaf image analysis-based crop diseases classification","year":"2020","series-title":"Signal, Image and Video Processing","author":"Kurmi","key":"10.1016\/j.ecoinf.2022.101725_bb0125"},{"article-title":"Batch normalization: Accelerating deep network training by reducing internal covariance shift","year":"2015","series-title":"Proc. Int. Conf. Mach. Learn","author":"Loffe","key":"10.1016\/j.ecoinf.2022.101725_bb0130"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0135","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.compag.2017.09.012","article-title":"An in-field automatic wheat disease diagnosis system","volume":"142","author":"Lu","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0140","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/s10658-011-9878-z","article-title":"Recent sdvances in sensing plant diseases for precision crop protection","volume":"133","author":"Mahlein","year":"2012","journal-title":"Eur. J. Plant Pathol."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0145","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.rse.2012.09.019","article-title":"Development of spectral indices for detecting and identifying plant diseases","volume":"128","author":"Mahlein","year":"2013","journal-title":"Remote Sens. Environ."},{"article-title":"Detection of leaf diseases and classification using digital image processing","year":"2017","series-title":"2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). Coimbatore, India","author":"Meena Prakash","key":"10.1016\/j.ecoinf.2022.101725_bb0150"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0155","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.3389\/fpls.2016.01419","article-title":"Using deep learning for image-based plant disease detection","volume":"7","author":"Mohanty","year":"2016","journal-title":"Front. Plant Sci."},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101725_bb0160","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.rti.2005.03.003","article-title":"Plant disease detection based on data fusion of hyper-spectral andmulti-spectral fluorescence imaging using Kohonen maps","volume":"11","author":"Moshou","year":"2005","journal-title":"Real-Time Imaging"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0165","unstructured":"Muthukannan, K., Latha, P., Selvi, R. P., & Nisha, P. (Mar. 2015). Classification of diseased plant leaves using neural network algorithms. ARPN J. Eng. Appl. Sci., 10(4), 1913\u20131919."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106543","article-title":"An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network","volume":"192","author":"Pandey","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0175","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.compag.2018.11.005","article-title":"Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers","volume":"156","author":"Pantazi","year":"2019","journal-title":"Comput. Electron. Agric."},{"article-title":"An intelligent system for domestic appliance identification using deep dense 1-D convolutional neural network","year":"2022","series-title":"2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE). Trivandrum, India","author":"Paul","key":"10.1016\/j.ecoinf.2022.101725_bb0180"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0185","doi-asserted-by":"crossref","DOI":"10.1109\/TII.2022.3168043","article-title":"Residential appliance identification using 1-D convolutional neural network based on multiscale sinusoidal initializers","author":"Paul","year":"2022","journal-title":"IEEE Trans. Indust. Inform."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0190","article-title":"Transfer learning for multi-crop leaf disease image classification using convolutional neural networks VGG","volume":"6","author":"Paymode","year":"2022","journal-title":"Artif. Intel. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0195","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.compag.2018.04.002","article-title":"Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild","volume":"161","author":"Picon","year":"2019","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101725_bb0200","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.jfoodeng.2009.01.014","article-title":"Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence","volume":"93","author":"Qin","year":"2009","journal-title":"J. Food Eng."},{"issue":"6","key":"10.1016\/j.ecoinf.2022.101725_bb0205","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0066428","article-title":"Yield trends are insufficient to double global crop production by 2050","volume":"8","author":"Ray","year":"2013","journal-title":"PLoS One"},{"article-title":"Cotton leaf disease identification using pattern recognition techniques","year":"2015","series-title":"2015 International Conference on Pervasive Computing (ICPC). Pune, India","author":"Rothe","key":"10.1016\/j.ecoinf.2022.101725_bb0210"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0215","doi-asserted-by":"crossref","first-page":"7271","DOI":"10.1007\/s11042-022-11902-7","article-title":"Robust and fast Plant Pathology Prognostics (P3) tool based on deep convolutional neural network","volume":"81","author":"Sasikaladevi","year":"2022","journal-title":"Multimed. Tools Appl."},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101725_bb0220","first-page":"212","article-title":"ResTS: residual deep interpretable architecture for plant disease detection","volume":"9","author":"Shah","year":"2022","journal-title":"Inform. Proc. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0225","doi-asserted-by":"crossref","first-page":"6051","DOI":"10.1007\/s11042-021-11763-6","article-title":"Deep transfer modeling for classification of Maize Plant Leaf Disease","volume":"81","author":"Singh","year":"2022","journal-title":"Multimed. Tools Appl."},{"article-title":"Training very deep networks","year":"2015","series-title":"Proc. Adv. Neural Inf. Process. Syst","author":"Srivastava","key":"10.1016\/j.ecoinf.2022.101725_bb0230"},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101725_bb0235","first-page":"185","article-title":"A novel approach for rice plant diseases classification with deep convolutional neural network","volume":"14","author":"Upadhyay","year":"2022","journal-title":"Int. J. Inf. Technol."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105456","article-title":"An optimized dense convolutional neural network model for disease recognition and classification in corn leaf","volume":"175","author":"Waheed","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0245","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoinf.2021.101247","article-title":"Identification of disease using deep learning and evaluation of bacteriosis in peach leaf","volume":"61","author":"Yadav","year":"2021","journal-title":"Ecol. Inform."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0250","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1794","article-title":"Linear spatial pyramid matching using sparse coding for image classification","author":"Yang","year":"2009"},{"key":"10.1016\/j.ecoinf.2022.101725_bb0255","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2020.105341","article-title":"Crop leaf disease recognition based on self-attention convolutional neural network","volume":"172","author":"Zeng","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101725_bb0260","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.compag.2017.01.014","article-title":"Leaf image based cucumber disease recognition using sparse representation classification","volume":"134","author":"Zhang","year":"2017","journal-title":"Comput. Electron. Agric."},{"issue":"9","key":"10.1016\/j.ecoinf.2022.101725_bb0265","doi-asserted-by":"crossref","first-page":"2092","DOI":"10.1109\/TMI.2019.2893944","article-title":"Attention residual learning for skin lesion classification","volume":"38","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"issue":"5","key":"10.1016\/j.ecoinf.2022.101725_bb0270","doi-asserted-by":"crossref","first-page":"4290","DOI":"10.1109\/TIE.2017.2762639","article-title":"Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes","volume":"65","author":"Zhao","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"journal-title":"Proc. IEEE Conf. Comput. Vis. Pattern Recognit.","article-title":"Learning deep features for discriminative localization","year":"2016","author":"Zhou","key":"10.1016\/j.ecoinf.2022.101725_bb0275"}],"container-title":["Ecological Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954122001753?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954122001753?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T17:27:30Z","timestamp":1716830850000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574954122001753"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":55,"alternative-id":["S1574954122001753"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.ecoinf.2022.101725","relation":{},"ISSN":["1574-9541"],"issn-type":[{"type":"print","value":"1574-9541"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images","name":"articletitle","label":"Article Title"},{"value":"Ecological Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ecoinf.2022.101725","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101725"}}