{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T20:30:44Z","timestamp":1723494644656},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004735","name":"Natural Science Foundation of\u00a0Hunan Province","doi-asserted-by":"publisher","award":["2021JJ30260"],"id":[{"id":"10.13039\/501100004735","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014472","name":"Scientific Research Foundation of Hunan Provincial Education Department","doi-asserted-by":"publisher","award":["19B191"],"id":[{"id":"10.13039\/100014472","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51805161"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.dsp.2022.103662","type":"journal-article","created":{"date-parts":[[2022,7,27]],"date-time":"2022-07-27T15:50:27Z","timestamp":1658937027000},"page":"103662","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Fault identification of rolling bearing with variable speed based on generalized broadband mode decomposition and distance evaluation technique"],"prefix":"10.1016","volume":"129","author":[{"given":"Hongyan","family":"Geng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6658-3750","authenticated-orcid":false,"given":"Yanfeng","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Long","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Guo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2022.103662_br0010","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.ymssp.2017.06.011","article-title":"Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis","volume":"99","author":"Zheng","year":"2018","journal-title":"Mech. Syst. Signal Process."},{"issue":"1","key":"10.1016\/j.dsp.2022.103662_br0020","first-page":"1","article-title":"An optimal deep sparse autoencoder with gated recurrent unit for rolling bearing fault diagnosis","volume":"31","author":"Zhao","year":"2019","journal-title":"Meas. Sci. Technol."},{"issue":"11","key":"10.1016\/j.dsp.2022.103662_br0030","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1088\/1361-6501\/aada8c","article-title":"Multiple instantaneous frequency ridge based integration strategy for bearing fault diagnosis under variable speed operations","volume":"29","author":"Ding","year":"2018","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2022.103662_br0040","doi-asserted-by":"crossref","first-page":"17050","DOI":"10.1109\/ACCESS.2019.2893497","article-title":"A new bearing fault diagnosis method based on fine-to-coarse multiscale permutation entropy Laplacian score and SVM","volume":"7","author":"Huo","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.dsp.2022.103662_br0050","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.jsv.2015.10.015","article-title":"Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis","volume":"364","author":"Cui","year":"2016","journal-title":"J. Sound Vib."},{"key":"10.1016\/j.dsp.2022.103662_br0060","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.jsv.2018.01.001","article-title":"Multi-scale stochastic resonance spectrogram for fault diagnosis of rolling element bearings","volume":"420","author":"He","year":"2018","journal-title":"J. Sound Vib."},{"issue":"22","key":"10.1016\/j.dsp.2022.103662_br0070","doi-asserted-by":"crossref","first-page":"4971","DOI":"10.1016\/j.jsv.2012.06.006","article-title":"Application of multi-scale chirplet path pursuit and fractional Fourier transform for gear fault detection in speed up and speed-down processes","volume":"331","author":"Luo","year":"2012","journal-title":"J. Sound Vib."},{"issue":"4","key":"10.1016\/j.dsp.2022.103662_br0080","doi-asserted-by":"crossref","first-page":"701","DOI":"10.2478\/v10178-011-0066-4","article-title":"Measurement of instantaneous shaft speed by advanced vibration signal processing-application to wind turbine gearbox","volume":"18","author":"Zimroz","year":"2011","journal-title":"Metrol. Meas. Syst."},{"key":"10.1016\/j.dsp.2022.103662_br0090","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.ymssp.2015.10.019","article-title":"Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate","volume":"72","author":"Mishra","year":"2016","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2022.103662_br0100","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.jsv.2016.09.012","article-title":"Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals","volume":"385","author":"Lu","year":"2016","journal-title":"J. Sound Vib."},{"issue":"8","key":"10.1016\/j.dsp.2022.103662_br0110","doi-asserted-by":"crossref","first-page":"2819","DOI":"10.1109\/TIM.2018.2868519","article-title":"Time-frequency squeezing and generalized demodulation combined for variable speed bearing fault diagnosis","volume":"68","author":"Huang","year":"2019","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"3","key":"10.1016\/j.dsp.2022.103662_br0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/s21030675","article-title":"A two-stage, intelligent bearing-fault-diagnosis method using order-tracking and a one-dimensional convolutional neural network with variable speeds","volume":"21","author":"Ji","year":"2021","journal-title":"Sensors"},{"issue":"10","key":"10.1016\/j.dsp.2022.103662_br0130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1088\/1361-6501\/ac0d78","article-title":"Extraction and enhancement of unknown bearing fault feature in the strong noise under variable speed condition","volume":"32","author":"Yang","year":"2021","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2022.103662_br0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109276","article-title":"A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions","volume":"177","author":"Su","year":"2021","journal-title":"Measurement"},{"issue":"10","key":"10.1016\/j.dsp.2022.103662_br0150","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac05f8","article-title":"Multiscale holospectrum convolutional neural network-based fault diagnosis of rolling bearings with variable operating conditions","volume":"32","author":"Zhang","year":"2021","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2022.103662_br0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109749","article-title":"A fault diagnosis method based on improved convolutional neural network for bearings under variable working conditions","volume":"182","author":"Zhang","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2022.103662_br0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.jsv.2020.115854","article-title":"Fault diagnosis for rolling bearings under unknown time-varying speed conditions with sparse representation","volume":"494","author":"Hou","year":"2021","journal-title":"J. Sound Vib."},{"issue":"5","key":"10.1016\/j.dsp.2022.103662_br0180","doi-asserted-by":"crossref","first-page":"1851","DOI":"10.1007\/s12206-021-0405-7","article-title":"A parameter-adaptive ACMD method based on particle swarm optimization algorithm for rolling bearing fault diagnosis under variable speed","volume":"35","author":"Ma","year":"2021","journal-title":"J. Mech. Sci. Technol."},{"issue":"8","key":"10.1016\/j.dsp.2022.103662_br0190","doi-asserted-by":"crossref","first-page":"2306","DOI":"10.1016\/j.measurement.2013.03.023","article-title":"A fault diagnosis approach for roller bearing based on VPMCD under variable speed condition","volume":"46","author":"Yang","year":"2013","journal-title":"Measurement"},{"issue":"11","key":"10.1016\/j.dsp.2022.103662_br0200","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40430-020-02661-3","article-title":"The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning","volume":"42","author":"Dong","year":"2020","journal-title":"J. Braz. Soc. Mech. Sci. Eng."},{"key":"10.1016\/j.dsp.2022.103662_br0210","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/8729572","article-title":"Automated bearing fault diagnosis using 2D analysis of vibration acceleration signals under variable speed conditions","volume":"2016","author":"Khan","year":"2016","journal-title":"Shock Vib."},{"key":"10.1016\/j.dsp.2022.103662_br0220","doi-asserted-by":"crossref","first-page":"701","DOI":"10.4028\/www.scientific.net\/AMR.971-973.701","article-title":"Rolling bearings fault diagnosis based on generalized demodulation time-frequency analysis method","volume":"971","author":"Bu","year":"2014","journal-title":"Adv. Mater. Res."},{"issue":"2","key":"10.1016\/j.dsp.2022.103662_br0230","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1109\/JSYST.2019.2929617","article-title":"An online bearing fault diagnosis technique via improved demodulation spectrum analysis under variable speed conditions","volume":"14","author":"Liu","year":"2020","journal-title":"IEEE Syst. J."},{"issue":"1","key":"10.1016\/j.dsp.2022.103662_br0240","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s10033-019-0322-1","article-title":"Generalized demodulation transform for bearing fault diagnosis under nonstationary conditions and gear noise interferences","volume":"32","author":"Zhao","year":"2019","journal-title":"Chin. J. Mech. Eng."},{"issue":"2","key":"10.1016\/j.dsp.2022.103662_br0250","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1109\/TIM.2019.2903700","article-title":"Generalized Vold-Kalman filtering for nonstationary compound faults feature extraction of bearing and gear","volume":"69","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.dsp.2022.103662_br0260","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.jsv.2016.05.022","article-title":"Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed","volume":"378","author":"Zhao","year":"2016","journal-title":"J. Sound Vib."},{"issue":"11","key":"10.1016\/j.dsp.2022.103662_br0270","first-page":"9734","article-title":"Broadband mode decomposition and its application to the quality evaluation of welding inverter power source signals","volume":"67","author":"Peng","year":"2019","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"4","key":"10.1016\/j.dsp.2022.103662_br0280","doi-asserted-by":"crossref","first-page":"1755","DOI":"10.1016\/j.ymssp.2006.07.014","article-title":"Subspace-based gearbox condition monitoring by kernel principal component analysis","volume":"21","author":"He","year":"2007","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2022.103662_br0290","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.patcog.2016.02.019","article-title":"Semi-supervised linear discriminant analysis for dimension reduction and classification","volume":"57","author":"Wang","year":"2016","journal-title":"Pattern Recogn. Phys."},{"key":"10.1016\/j.dsp.2022.103662_br0300","first-page":"1","article-title":"Roller bearing fault diagnosis based on adaptive sparsest narrow-band decomposition and MMC-FCH","author":"Peng","year":"2019","journal-title":"Shock Vib."},{"key":"10.1016\/j.dsp.2022.103662_br0310","doi-asserted-by":"crossref","first-page":"1745","DOI":"10.1016\/j.dib.2018.11.019","article-title":"Bearing vibration data collected under time-varying rotational speed conditions","volume":"21","author":"Huang","year":"2018","journal-title":"Data Brief"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200422002792?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200422002792?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,9]],"date-time":"2024-05-09T07:03:00Z","timestamp":1715238180000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200422002792"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":31,"alternative-id":["S1051200422002792"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2022.103662","relation":{},"ISSN":["1051-2004"],"issn-type":[{"value":"1051-2004","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fault identification of rolling bearing with variable speed based on generalized broadband mode decomposition and distance evaluation technique","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2022.103662","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103662"}}