{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,19]],"date-time":"2024-08-19T20:30:28Z","timestamp":1724099428670},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003995","name":"Anhui Provincial Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003995","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computerized Medical Imaging and Graphics"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.compmedimag.2022.102054","type":"journal-article","created":{"date-parts":[[2022,3,12]],"date-time":"2022-03-12T16:13:12Z","timestamp":1647101592000},"page":"102054","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Two-stage segmentation network with feature aggregation and multi-level attention mechanism for multi-modality heart images"],"prefix":"10.1016","volume":"97","author":[{"given":"Yuhui","family":"Song","sequence":"first","affiliation":[]},{"given":"Xiuquan","family":"Du","sequence":"additional","affiliation":[]},{"given":"Yanping","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shuo","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"12","key":"10.1016\/j.compmedimag.2022.102054_bib1","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: A deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compmedimag.2022.102054_bib2","first-page":"56","article-title":"Diagnostic assessment of deep learning algorithms for detection and segmentation of lesion in mammographic images","author":"Boot","year":"2020","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib3","first-page":"457","article-title":"Multi-task attention-based semi-supervised learning for medical image segmentation","author":"Chen","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib4","doi-asserted-by":"crossref","unstructured":"Chen, C., Dou, Q., Chen, H., Qin, J., Heng,P., 2020. Unsupervised bidirectional crossmodality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging, 39 (7): 2494\u20132505.","DOI":"10.1109\/TMI.2020.2972701"},{"key":"10.1016\/j.compmedimag.2022.102054_bib5","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101685","article-title":"An integrated deep learning framework for joint segmentation of blood pool and myocardium","volume":"62","author":"Du","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib6","first-page":"210","article-title":"Globally guided progressive fusion network for 3d pancreas segmentation","author":"Fang","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib7","article-title":"Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography","volume":"67","author":"Fei","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib8","first-page":"207","article-title":"Local probabilistic atlases and a posteriori correction for the segmentation of heart images, statistical atlases and computational models of the heart","author":"Galisot","year":"2018","journal-title":"ACDC MMWHS Chall."},{"key":"10.1016\/j.compmedimag.2022.102054_bib9","first-page":"309","article-title":"Multi-resolution path cnn with deep supervision for intervertebral disc localization and segmentation","author":"Gao","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib10","first-page":"337","article-title":"kcbac-net: deeply supervised complete bipartite networks with asymmetric convolutions for medical image segmentation","author":"Gu","year":"2021","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib11","first-page":"3146","article-title":"Dual attention network for scene segmentation","author":"Fu","year":"2019","journal-title":"IEEE Conf. Comput. Vis. Pattern Recognit."},{"key":"10.1016\/j.compmedimag.2022.102054_bib12","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1007\/978-3-319-75541-0_25","article-title":"Mri whole heart segmentation using discrete nonlinear registration and fast non-local fusion","author":"Heinrich","year":"2018","journal-title":"Stat. Atlas Comput. Models Heart ACDC MMWHS Chall."},{"key":"10.1016\/j.compmedimag.2022.102054_bib13","doi-asserted-by":"crossref","DOI":"10.1117\/1.JEI.21.1.010901","article-title":"Heart chambers and whole heart segmentation techniques: a review","volume":"21","author":"Kang","year":"2012","journal-title":"J. Electron. Imaging"},{"key":"10.1016\/j.compmedimag.2022.102054_bib14","first-page":"770","article-title":"Resnet50: Deep residual learning for image recognition","author":"He","year":"2016","journal-title":"IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib15","unstructured":"Li, H., Xiong, P., An, J., Wang, L., 2018. Pyramid attention network for semantic segmentation."},{"issue":"4","key":"10.1016\/j.compmedimag.2022.102054_bib16","first-page":"640","article-title":"Fully convolutional networks for semantic segmentation","volume":"39","author":"Long","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib17","first-page":"485","article-title":"A deep learning network for right ventricle segmentation in short-axis mri","author":"Luo","year":"2016","journal-title":"Comput. Cardiol. Conf."},{"key":"10.1016\/j.compmedimag.2022.102054_bib18","first-page":"128","article-title":"Neural style transfer improves 3d cardiovascular mr image segmentation on inconsistent data","volume":"11765","author":"Ma","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib19","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.media.2018.10.004","article-title":"Fully convolutional multi-scale residual densenets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers","volume":"51","author":"Mahendra","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib20","first-page":"173","article-title":"Segmentation of vessels in ultra high frequency ultrasound sequences using contextual memory","author":"Mathai","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib21","series-title":"Global Atlas on Cardiovascular Disease Prevention and Control","author":"Mendis","year":"2011"},{"key":"10.1016\/j.compmedimag.2022.102054_bib22","first-page":"199","article-title":"Multi-planar deep segmentation networks for cardiac substructures from mri and ct","author":"Mortazi","year":"2017","journal-title":"Stat. Atlas Comput. Models Heart ACDC MMWHS Chall."},{"key":"10.1016\/j.compmedimag.2022.102054_bib23","first-page":"80","article-title":"Interactive whole-heart segmentation in congenital heart disease","author":"Pace","year":"2015","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib24","series-title":"and Computational Models of the Heart ACDC and MMWHS Challenges","first-page":"190","article-title":"Multi-label whole heart segmentation using cnns and anatomical label configurations","author":"Payer","year":"2018"},{"key":"10.1016\/j.compmedimag.2022.102054_bib25","first-page":"83","article-title":"Recurrent fully convolutional neural networks for multi-slice mri cardiac segmentation","author":"Poudel","year":"2016","journal-title":"Reconstr., Segm., Anal. Med. Images"},{"key":"10.1016\/j.compmedimag.2022.102054_bib26","first-page":"472","article-title":"Joint learning of motion estimation and segmentation for cardiac mr image sequences","author":"Qin","year":"2018","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib27","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101612","article-title":"Trophectoderm segmentation in human embryo images via inceptioned u-net","volume":"62","author":"Rad","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib28","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib29","unstructured":"Savioli, N., Vieira, M.S., Lamata, P., Montana, G., 2018. A generative adversarial model for right ventricle segmentation."},{"key":"10.1016\/j.compmedimag.2022.102054_bib30","first-page":"569","article-title":"Bayesian voxdrn: A probabilistic deep voxelwise dilated residual network for whole heart segmentation from 3d mr images","author":"Shi","year":"2018","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib31","article-title":"A two-stage 3d unet framework for multi-class segmentation on full resolution image","author":"Wang","year":"2018","journal-title":"Stat. Atlas Comput. Models Heart ACDC MMWHS Chall."},{"key":"10.1016\/j.compmedimag.2022.102054_bib32","first-page":"3156","article-title":"Residual attention network for image classification","author":"Wang","year":"2017","journal-title":"IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib33","first-page":"264","article-title":"Automatic segmentation of vestibular schwannoma from t2-weighted mri by deep spatial attention with hardness-weighted loss","author":"Wang","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib34","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.media.2020.101846","article-title":"Triple attention learning for classification of 14 thoracic diseases using chest radiography","volume":"67","author":"Wang","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib35","first-page":"318","article-title":"Automatic paraspinal muscle segmentation in patients with lumbar pathology using deep convolutional neural network","author":"Xia","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib36","article-title":"Zoom in lesions for better diagnosis: Attention guided deformation network for wce image classification","volume":"99","author":"Xing","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.compmedimag.2022.102054_bib37","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.media.2018.09.001","article-title":"Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture","volume":"50","author":"Xu","year":"2018","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib38","article-title":"Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning","volume":"59","author":"Xu","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib39","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101668","article-title":"Contrast agent-free synthesis and segmentation of ischemic heart disease images using progressive sequential causal gans","volume":"62","author":"Xu","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib40","first-page":"505","article-title":"Direct estimation of regional wall thicknesses via residual recurrent neural network","volume":"10265","author":"Xue","year":"2017","journal-title":"Inter. Conf. on Info. Process. in Med. Imaging"},{"key":"10.1016\/j.compmedimag.2022.102054_bib41","first-page":"215","article-title":"Hybrid loss guided convolutional networks for whole heart parsing","author":"Yang","year":"2017","journal-title":"Stat. Atlas Comput. Models Heart ACDC MMWHS Chall."},{"key":"10.1016\/j.compmedimag.2022.102054_bib42","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.media.2019.05.004","article-title":"Attentive neural cell instance segmentation","volume":"55","author":"Yi","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib43","article-title":"Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization","volume":"60","author":"Zhang","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2022.102054_bib44","first-page":"201","article-title":"Fully automated pancreas segmentation with two-stage 3d convolutional neural networks","author":"Zhao","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib45","first-page":"759","article-title":"Hfa-net: 3d cardiovascular image segmentation with asymmetrical pooling and content-aware fusion","author":"Zheng","year":"2019","journal-title":"Med. Image Comput. Comput. -Assist. Interv. (MICCAI)"},{"key":"10.1016\/j.compmedimag.2022.102054_bib46","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.media.2016.02.006","article-title":"Multi-scale patch and multi-modality atlases for whole heart segmentation of mri","volume":"31","author":"Zhuang","year":"2016","journal-title":"Med. Image Anal."}],"container-title":["Computerized Medical Imaging and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0895611122000271?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0895611122000271?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T12:25:47Z","timestamp":1678019147000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0895611122000271"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":46,"alternative-id":["S0895611122000271"],"URL":"https:\/\/doi.org\/10.1016\/j.compmedimag.2022.102054","relation":{},"ISSN":["0895-6111"],"issn-type":[{"value":"0895-6111","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Two-stage segmentation network with feature aggregation and multi-level attention mechanism for multi-modality heart images","name":"articletitle","label":"Article Title"},{"value":"Computerized Medical Imaging and Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compmedimag.2022.102054","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102054"}}