{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:19:18Z","timestamp":1732036758125},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,11,1]],"date-time":"2017-11-01T00:00:00Z","timestamp":1509494400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"German Academic Exchange Service (DAAD)"}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computerized Medical Imaging and Graphics"],"published-print":{"date-parts":[[2017,11]]},"DOI":"10.1016\/j.compmedimag.2017.06.001","type":"journal-article","created":{"date-parts":[[2017,6,17]],"date-time":"2017-06-17T08:31:03Z","timestamp":1497688263000},"page":"2-13","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":245,"special_numbering":"C","title":["Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology"],"prefix":"10.1016","volume":"61","author":[{"given":"Harshita","family":"Sharma","sequence":"first","affiliation":[]},{"given":"Norman","family":"Zerbe","sequence":"additional","affiliation":[]},{"given":"Iris","family":"Klempert","sequence":"additional","affiliation":[]},{"given":"Olaf","family":"Hellwich","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Hufnagl","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.compmedimag.2017.06.001_bib0005","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1002\/cam4.365","article-title":"Reproducibility of Her2\/neu scoring in gastric","volume":"4","author":"Behrens","year":"2015","journal-title":"Cancer Med."},{"issue":"3","key":"10.1016\/j.compmedimag.2017.06.001_bib0010","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1007\/s10618-009-0153-2","article-title":"ECM-aware cell-graph mining for bone tissue modeling and classification","volume":"20","author":"Bilgin","year":"2010","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0015","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","year":"2006"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0020","series-title":"Neural Networks: Tricks of the Trade","first-page":"421","article-title":"Stochastic gradient descent tricks.","author":"Bottou","year":"2012"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0025","series-title":"Digital Image Computing: Techniques and Applications, 2005, DICTA\u201905, Proceedings 2005","article-title":"Virtual microscopy with extended depth of field","author":"Bradley","year":"2005"},{"issue":"1","key":"10.1016\/j.compmedimag.2017.06.001_bib0030","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0035","series-title":"Learning Ensembles of Convolutional Neural Networks","author":"Chen","year":"2016"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0040","series-title":"LDAP\u201911","article-title":"MDB: a memory-mapped database and backend for OpenLDAP","author":"Chu","year":"2011"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0045","series-title":"Medical Image Computing and Computer-Assisted Intervention-MICCAI","first-page":"411","article-title":"Mitosis detection in breast cancer histology images with deep neural networks","author":"Cire\u015fan","year":"2013"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0050","series-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3642","article-title":"Multi-column deep neural networks for image classification","author":"Ciregan","year":"2012"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0055","series-title":"SPIE Medical Imaging","first-page":"867605","article-title":"Automated gastric cancer diagnosis on H&E-stained sections: training a classifier on a large scale with multiple instance machine learning","author":"Cosatto","year":"2013"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0060","series-title":"SPIE Medical Imaging","first-page":"904103","article-title":"Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks","author":"Cruz-Roa","year":"2014"},{"issue":"7","key":"10.1016\/j.compmedimag.2017.06.001_bib0065","doi-asserted-by":"crossref","first-page":"1169","DOI":"10.1109\/29.1644","article-title":"Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression","volume":"36","author":"Daugman","year":"1988","journal-title":"IEEE Trans. Acoust., Speech Signal Process."},{"issue":"3\u20134","key":"10.1016\/j.compmedimag.2017.06.001_bib0070","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1561\/2000000039","article-title":"Deep learning: methods and applications","volume":"7","author":"Deng","year":"2014","journal-title":"Found. Trends Signal Process."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0075","article-title":"Three classes of deep learning architectures and their applications: a tutorial survey","author":"Deng","year":"2012","journal-title":"APSIPA Trans. Signal Inf. Process."},{"issue":"9","key":"10.1016\/j.compmedimag.2017.06.001_bib0080","doi-asserted-by":"crossref","first-page":"1121","DOI":"10.1016\/j.humpath.2004.05.010","article-title":"The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia","volume":"35","author":"Diamond","year":"2004","journal-title":"Hum. Pathol."},{"issue":"7","key":"10.1016\/j.compmedimag.2017.06.001_bib0085","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.compmedimag.2010.12.005","article-title":"Ensemble based system for whole-slide prostate cancer probability mapping using color texture features","volume":"35","author":"DiFranco","year":"2011","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0090","series-title":"28th Annual International Conference of the Engineering in Medicine and Biology Society, 2006, EMBS\u201906","first-page":"4759","article-title":"Detecting prostatic adenocarcinoma from digitized histology using a multi-scale hierarchical classification approach","author":"Doyle","year":"2006"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0095","series-title":"4th IEEE International Symposium on Biomedical Imaging","first-page":"1284","article-title":"Automated grading of prostate cancer using architectural and textural image features","author":"Doyle","year":"2007"},{"issue":"6","key":"10.1016\/j.compmedimag.2017.06.001_bib0100","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1002\/cyto.b.20119","article-title":"Automated virtual microscopy of gastric biopsies","volume":"70","author":"Ficsor","year":"2006","journal-title":"Cytom. Part B: Clin. Cytom."},{"issue":"6","key":"10.1016\/j.compmedimag.2017.06.001_bib0105","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","volume":"3","author":"Haralick","year":"1973","journal-title":"IEEE Trans. Syst., Man Cybern."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0110","series-title":"IJCAI, vol. 5","first-page":"1765","article-title":"What kind of graphical model is the brain?","author":"Hinton","year":"2005"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0115","series-title":"Efficient Multiple Instance Convolutional Neural Networks for Gigapixel Resolution Image Classification","author":"Hou","year":"2015"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0120","series-title":"Proceedings of the ACM International Conference on Multimedia","first-page":"675","article-title":"Caffe: convolutional architecture for fast feature embedding","author":"Jia","year":"2014"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0125","series-title":"Aforge.net Framework","author":"Kirillov","year":"2013"},{"issue":"6","key":"10.1016\/j.compmedimag.2017.06.001_bib0130","doi-asserted-by":"crossref","first-page":"1099","DOI":"10.1136\/amiajnl-2012-001540","article-title":"Pathology imaging informatics for quantitative analysis of whole-slide images","volume":"20","author":"Kothari","year":"2013","journal-title":"J. Am. Med. Inf. Assoc."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0135","series-title":"An Introduction to Neural Networks","author":"Kr\u00f6se","year":"1993"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0140","series-title":"Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"issue":"4","key":"10.1016\/j.compmedimag.2017.06.001_bib0145","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"LeCun","year":"1989","journal-title":"Neural Comput."},{"issue":"7553","key":"10.1016\/j.compmedimag.2017.06.001_bib0150","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.compmedimag.2017.06.001_bib0155","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40537-014-0007-7","article-title":"Deep learning applications and challenges in big data analytics","volume":"2","author":"Najafabadi","year":"2015","journal-title":"J. Big Data"},{"issue":"1","key":"10.1016\/j.compmedimag.2017.06.001_bib0160","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/0031-3203(95)00067-4","article-title":"A comparative study of texture measures with classification based on featured distributions","volume":"29","author":"Ojala","year":"1996","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0165","first-page":"2825","article-title":"Scikit-learn: machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0170","series-title":"Image Convolution with CUDA. NVIDIA Corporation White Paper","author":"Podlozhnyuk","year":"2007"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0175","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops","first-page":"806","article-title":"CNN features off-the-shelf: an astounding baseline for recognition","author":"Razavian","year":"2014"},{"issue":"1\u20132","key":"10.1016\/j.compmedimag.2017.06.001_bib0180","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10462-009-9124-7","article-title":"Ensemble-based classifiers","volume":"33","author":"Rokach","year":"2010","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0185","first-page":"234","article-title":"U-Net: convolutional networks for biomedical image segmentation","volume":"vol. 9351","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0190","series-title":"Gastric Cancer","first-page":"23","article-title":"Epidemiology of gastric cancer","author":"Rugge","year":"2015"},{"issue":"3","key":"10.1016\/j.compmedimag.2017.06.001_bib0195","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vis."},{"issue":"6","key":"10.1016\/j.compmedimag.2017.06.001_bib0200","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.1016\/j.patcog.2008.08.027","article-title":"Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development","volume":"42","author":"Sertel","year":"2009","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.compmedimag.2017.06.001_bib0205","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1186\/1746-1596-7-134","article-title":"Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics","volume":"7","author":"Sharma","year":"2012","journal-title":"Diagn. Pathol."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0210","series-title":"Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015)","first-page":"37","article-title":"A multi-resolution approach for combining visual information using nuclei segmentation and classification in histopathological images","author":"Sharma","year":"2015"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0215","series-title":"2015 IEEE International Conference on Bioinformatics and Bioengineering (BIBE)","first-page":"1","article-title":"Appearance-based necrosis detection using textural features and SVM with discriminative thresholding in histopathological whole slide images","author":"Sharma","year":"2015"},{"issue":"1","key":"10.1016\/j.compmedimag.2017.06.001_bib0220","article-title":"A review of graph-based methods for image analysis in digital histopathology","volume":"1","author":"Sharma","year":"2015","journal-title":"Diagn. Pathol."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0225","series-title":"SPIE Medical Imaging","first-page":"97910X","article-title":"Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology","author":"Sharma","year":"2016"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0230","series-title":"Presentation: Deep Convolutional Neural Networks for Histological Image Analysis in Gastric Carcinoma Whole Slide Images [Video file]","author":"Sharma","year":"2016"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0235","series-title":"Emgu CV Essentials","author":"Shi","year":"2013"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0240","series-title":"IEEE Canadian Conference on Electrical and Computer Engineering, vol. 2","first-page":"1134","article-title":"Colour texture analysis using co-occurrence matrices for classification of colon cancer images","author":"Shuttleworth","year":"2002"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0245","series-title":"2012 21st International Conference on Pattern Recognition (ICPR)","first-page":"2306","article-title":"Learning-based mitotic cell detection in histopathological images","author":"Sommer","year":"2012"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0250","series-title":"The Accord.NET Framework","author":"Souza","year":"2014"},{"issue":"1","key":"10.1016\/j.compmedimag.2017.06.001_bib0255","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0260","series-title":"2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing","first-page":"317","article-title":"Performance and scalability of GPU-based convolutional neural networks","author":"Strigl","year":"2010"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0265","series-title":"Proceedings of the 30th International Conference on Machine Learning (ICML-13)","first-page":"1139","article-title":"On the importance of initialization and momentum in deep learning","author":"Sutskever","year":"2013"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0270","series-title":"EUROCON 2003, Computer as a Tool, The IEEE Region 8, vol. 1","first-page":"304","article-title":"Colour spaces: perceptual, historical and applicational background","author":"Tkal\u010di\u010d","year":"2003"},{"issue":"8","key":"10.1016\/j.compmedimag.2017.06.001_bib0275","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1038\/nri1415","article-title":"Inflammation and necrosis promote tumour growth","volume":"4","author":"Vakkila","year":"2004","journal-title":"Nat. Rev. Immunol."},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0280","doi-asserted-by":"crossref","first-page":"e453.","DOI":"10.7717\/peerj.453","article-title":"Scikit-image: image processing in Python","volume":"2","author":"van der Walt","year":"2014","journal-title":"PeerJ"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0285","series-title":"VMscope Products","author":"VMscope GmbH","year":"2010"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0290","series-title":"Fine-Tuning for Image Style Recognition","author":"Xia","year":"2015"},{"key":"10.1016\/j.compmedimag.2017.06.001_bib0295","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neucom.2016.01.034","article-title":"A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images","volume":"191","author":"Xu","year":"2016","journal-title":"Neurocomputing"},{"issue":"12","key":"10.1016\/j.compmedimag.2017.06.001_bib0300","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1136\/jcp.51.12.895","article-title":"Quantitative assessment of gastric atrophy using the syntactic structure analysis","volume":"51","author":"Zaitoun","year":"1998","journal-title":"J. Clin. Pathol."}],"container-title":["Computerized Medical Imaging and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0895611117300502?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0895611117300502?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,31]],"date-time":"2018-08-31T16:26:10Z","timestamp":1535732770000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0895611117300502"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,11]]},"references-count":60,"alternative-id":["S0895611117300502"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.compmedimag.2017.06.001","relation":{},"ISSN":["0895-6111"],"issn-type":[{"value":"0895-6111","type":"print"}],"subject":[],"published":{"date-parts":[[2017,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology","name":"articletitle","label":"Article Title"},{"value":"Computerized Medical Imaging and Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compmedimag.2017.06.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}