iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.COMPBIOMED.2021.104624
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:45:13Z","timestamp":1726469113569},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.compbiomed.2021.104624","type":"journal-article","created":{"date-parts":[[2021,7,5]],"date-time":"2021-07-05T15:20:24Z","timestamp":1625498424000},"page":"104624","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["A data science approach for early-stage prediction of Patient's susceptibility to acute side effects of advanced radiotherapy"],"prefix":"10.1016","volume":"135","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7009-2700","authenticated-orcid":false,"given":"Mahmoud","family":"Aldraimli","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0164-8218","authenticated-orcid":false,"given":"Daniele","family":"Soria","sequence":"additional","affiliation":[]},{"given":"Diana","family":"Grishchuck","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1786-349X","authenticated-orcid":false,"given":"Samuel","family":"Ingram","sequence":"additional","affiliation":[]},{"given":"Robert","family":"Lyon","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1870-8934","authenticated-orcid":false,"given":"Anil","family":"Mistry","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2716-9677","authenticated-orcid":false,"given":"Jorge","family":"Oliveira","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9625-2111","authenticated-orcid":false,"given":"Robert","family":"Samuel","sequence":"additional","affiliation":[]},{"given":"Leila E.A.","family":"Shelley","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6103-5870","authenticated-orcid":false,"given":"Sarah","family":"Osman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7184-2932","authenticated-orcid":false,"given":"Miriam V.","family":"Dwek","sequence":"additional","affiliation":[]},{"given":"David","family":"Azria","sequence":"additional","affiliation":[]},{"given":"Jenny","family":"Chang-Claude","sequence":"additional","affiliation":[]},{"given":"Sara","family":"Guti\u00e9rrez-Enr\u00edquez","sequence":"additional","affiliation":[]},{"given":"Maria Carmen","family":"De Santis","sequence":"additional","affiliation":[]},{"given":"Barry S.","family":"Rosenstein","sequence":"additional","affiliation":[]},{"given":"Dirk","family":"De Ruysscher","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8771-8124","authenticated-orcid":false,"given":"Elena","family":"Sperk","sequence":"additional","affiliation":[]},{"given":"R. Paul","family":"Symonds","sequence":"additional","affiliation":[]},{"given":"Hilary","family":"Stobart","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7416-5137","authenticated-orcid":false,"given":"Ana","family":"Vega","sequence":"additional","affiliation":[]},{"given":"Liv","family":"Veldeman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6699-0479","authenticated-orcid":false,"given":"Adam","family":"Webb","sequence":"additional","affiliation":[]},{"given":"Christopher J.","family":"Talbot","sequence":"additional","affiliation":[]},{"given":"Catharine M.","family":"West","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2824-4854","authenticated-orcid":false,"given":"Tim","family":"Rattay","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5507-6158","authenticated-orcid":false,"given":"Thierry J.","family":"Chaussalet","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2021.104624_bib1","doi-asserted-by":"crossref","first-page":"7776","DOI":"10.1109\/ACCESS.2017.2696365","article-title":"Machine learning with big data: challenges and approaches","volume":"5","author":"L\u2019heureux","year":"2017","journal-title":"IEEE Access"},{"issue":"33","key":"10.1016\/j.compbiomed.2021.104624_bib2","doi-asserted-by":"crossref","first-page":"E1054","DOI":"10.1503\/cmaj.170807","article-title":"Routinely collected data: the importance of high-quality diagnostic coding to research","volume":"189","author":"Nicholls","year":"2017","journal-title":"CMAJ (Can. Med. Assoc. J.)"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.104624_bib3","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1142\/S0219622006002258","article-title":"10 challenging problems in data mining research","volume":"5","author":"Yang","year":"2006","journal-title":"Int. J. Inf. Technol. Decis. Making"},{"key":"10.1016\/j.compbiomed.2021.104624_bib4","first-page":"287","article-title":"Making class bias useful: a strategy of learning from imbalanced data","volume":"vol. 4881","author":"Gu","year":"2007"},{"year":"2016","series-title":"Survey of Resampling Techniques for Improving Classification Performance in Unbalanced Datasets","author":"More","key":"10.1016\/j.compbiomed.2021.104624_bib5"},{"key":"10.1016\/j.compbiomed.2021.104624_bib6","series-title":"Proceedings of the 2007 International Conference on Data Mining","first-page":"35","article-title":"Cost-sensitive learning vs sampling: which is best for handling unbalanced classes with unequal error costs?","author":"Weiss","year":"2007"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.104624_bib7","first-page":"15","article-title":"Imbalanced data learning approaches review","volume":"3","author":"Bekkar","year":"2013","journal-title":"Int. J. Data Mini. Know. Manag. Proc. (IJDKP)"},{"article-title":"Is combining classifiers better than selecting the best one?","year":"2002","series-title":"Proceedings of the Nineteenth International Conference on Machine Learning","author":"Dzeroski","key":"10.1016\/j.compbiomed.2021.104624_bib9"},{"year":"2010","series-title":"A Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines","author":"Choi","key":"10.1016\/j.compbiomed.2021.104624_bib10"},{"key":"10.1016\/j.compbiomed.2021.104624_bib13","series-title":"Proceedings of the 2008 SIAM International Conference on Data Mining","first-page":"588","article-title":"On the dangers of cross-validation. An experimental evaluation","author":"Bharat Rao","year":"2008"},{"key":"10.1016\/j.compbiomed.2021.104624_bib14","first-page":"231","article-title":"2008. Cost-sensitive learning and the class imbalance problem","author":"Ling","year":"2011","journal-title":"Encyc. Mach. Learn."},{"key":"10.1016\/j.compbiomed.2021.104624_bib15","series-title":"Proc. Int'l Workshop Utility-Based Data Mining","first-page":"69","article-title":"Does cost-sensitive learning beat sampling for classify-ing rare classes?","author":"McCarthy","year":"2005"},{"issue":"21","key":"10.1016\/j.compbiomed.2021.104624_bib16","doi-asserted-by":"crossref","first-page":"2667","DOI":"10.1093\/bioinformatics\/btl463","article-title":"Gene expression Targeted projection pursuit for visualising gene expression data classifications","volume":"22","author":"Faith","year":"2006","journal-title":"Bioinformatics"},{"article-title":"January. Information gain versus gain ratio: a study of split method biases","year":"2002","series-title":"ISAIM","author":"Harris","key":"10.1016\/j.compbiomed.2021.104624_bib17"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.104624_bib18","doi-asserted-by":"crossref","first-page":"287","DOI":"10.3857\/roj.2020.00983","article-title":"Management of grade 3 acute dermatitis with moist desquamation after adjuvant chest wall radiotherapy: a case report","volume":"38","author":"Delishaj","year":"2020","journal-title":"Rad. Oncol. J."},{"year":"2014","series-title":"Cancer research UK statitistics","author":"UK","key":"10.1016\/j.compbiomed.2021.104624_bib19"},{"issue":"2","key":"10.1016\/j.compbiomed.2021.104624_bib20","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1002\/mp.13329","article-title":"Machine learning algorithms for outcome prediction in (chemo) radiotherapy: an empirical comparison of classifiers (vol 45, pg 3449, 2018)","volume":"46","author":"Deist","year":"2019","journal-title":"Med. Phys."},{"issue":"5","key":"10.1016\/j.compbiomed.2021.104624_bib21","doi-asserted-by":"crossref","first-page":"1071","DOI":"10.1016\/j.ijrobp.2019.12.032","article-title":"Quantitative thermal imaging biomarkers to detect acute skin toxicity from breast radiation therapy using supervised machine learning","volume":"106","author":"Saednia","year":"2020","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.104624_bib22","first-page":"68","article-title":"April. Patient-to-patient variability in the expression of radiation-induced normal tissue injury","volume":"vol. 4","author":"Bentzen","year":"1994"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.104624_bib23","doi-asserted-by":"crossref","first-page":"S59","DOI":"10.1016\/j.ijrobp.2018.06.167","article-title":"Applying a machine learning approach to predict acute toxicities during radiation for breast cancer patients","volume":"102","author":"Reddy","year":"2018","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.104624_bib24","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.radonc.2019.04.034","article-title":"REQUITE: a prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer","volume":"138","author":"Seibold","year":"2019","journal-title":"Radiother. Oncol."},{"issue":"12","key":"10.1016\/j.compbiomed.2021.104624_bib25","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1016\/j.clon.2014.09.008","article-title":"The REQUITE project: validating predictive models and biomarkers of radiotherapy toxicity to reduce side-effects and improve quality of life in cancer survivors","volume":"26","author":"West","year":"2014","journal-title":"Clin. Oncol."},{"issue":"6137","key":"10.1016\/j.compbiomed.2021.104624_bib27","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1126\/science.1236536","article-title":"Bayes' theorem in the 21st century","volume":"340","author":"Efron","year":"2013","journal-title":"Science"},{"article-title":"Fast training of Support vector machines using sequential minimal optimisation","year":"1998","series-title":"Advances in Kernel Methods - Support Vector Learning","author":"Platt","key":"10.1016\/j.compbiomed.2021.104624_bib28"},{"year":"2002","series-title":"Logistic Regression","author":"Kleinbaum","key":"10.1016\/j.compbiomed.2021.104624_bib29"},{"volume":"vol. 7","year":"2013","author":"Graupe","key":"10.1016\/j.compbiomed.2021.104624_bib30"},{"key":"10.1016\/j.compbiomed.2021.104624_bib31","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1613\/jair.279","article-title":"Improved use of continuous attributes in C4. 5","volume":"4","author":"Quinlan","year":"1996","journal-title":"J. Artif. Intell. Res."},{"issue":"1\u20132","key":"10.1016\/j.compbiomed.2021.104624_bib32","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s10994-005-0466-3","article-title":"Logistic model trees","volume":"59","author":"Landwehr","year":"2005","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib33","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib34","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1007\/BF00153759","article-title":"Instance-based learning algorithms","volume":"6","author":"Aha","year":"1991","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compbiomed.2021.104624_bib35","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.radonc.2019.04.034","article-title":"REQUITE: a prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer","volume":"138","author":"Seibold","year":"2019","journal-title":"Radiother. Oncol."},{"issue":"2","key":"10.1016\/j.compbiomed.2021.104624_bib36","doi-asserted-by":"crossref","first-page":"168","DOI":"10.4103\/0253-7613.93842","article-title":"Data management in clinical research: an overview","volume":"44","author":"Krishnankutty","year":"2012","journal-title":"Indian J. Pharmacol."},{"key":"10.1016\/j.compbiomed.2021.104624_bib37","first-page":"80","article-title":"Complexity of equivalence class and boundary value testing methods","volume":"751","author":"Arnicane","year":"2009","journal-title":"Int. J. Comput. Sci. Inf. Technol."},{"key":"10.1016\/j.compbiomed.2021.104624_bib38","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.eswa.2017.07.026","article-title":"An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers","volume":"89","author":"Garciarena","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2021.104624_bib39","first-page":"41","article-title":"December. A decision tree-based missing value imputation technique for data pre-processing","volume":"vol. 121","author":"Rahman","year":"2011"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib40","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/BF00116251","article-title":"Induction of decision trees","volume":"1","author":"Quinlan","year":"1986","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compbiomed.2021.104624_bib43","first-page":"445","article-title":"Improving classification performance with discretisation on biomedical datasets","volume":"vol. 2008","author":"Lustgarten","year":"2008"},{"issue":"5","key":"10.1016\/j.compbiomed.2021.104624_bib44","doi-asserted-by":"crossref","first-page":"1121","DOI":"10.3892\/or_00000963","article-title":"Chemotherapy for breast cancer","volume":"24","author":"Hassan","year":"2010","journal-title":"Oncol. Rep."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib46","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0360-3016(85)90366-9","article-title":"A review of \u03b1\u03b2 ratios for experimental tumors: implications for clinical studies of altered fractionation","volume":"11","author":"Williams","year":"1985","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"year":"2014","series-title":"About Feature Scaling and Normalization and the Effect of Standardization for Machine Learning Algorithms","key":"10.1016\/j.compbiomed.2021.104624_bib47"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.104624_bib48","doi-asserted-by":"crossref","first-page":"S222","DOI":"10.1016\/j.ijrobp.2012.07.576","article-title":"Rate of moist desquamation in patients receiving radiation for breast cancer after mastectomy versus breast-conserving surgery","volume":"84","author":"Wright","year":"2012","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"10","key":"10.1016\/j.compbiomed.2021.104624_bib49","article-title":"Evaluation measures for models' assessment over imbalanced data sets","volume":"3","author":"Bekkar","year":"2013","journal-title":"J. Inf. Eng. Appl."},{"issue":"No. 1","key":"10.1016\/j.compbiomed.2021.104624_bib50","first-page":"973","article-title":"August. The foundations of cost-sensitive learning","volume":"17","author":"Elkan","year":"2001","journal-title":"Int. Joint Conf. Artif. Intell."},{"key":"10.1016\/j.compbiomed.2021.104624_bib51","series-title":"Australasian Joint Conference on Artificial Intelligence","first-page":"1015","article-title":"December. Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation","author":"Sokolova","year":"2006"},{"issue":"10","key":"10.1016\/j.compbiomed.2021.104624_bib52","article-title":"Evaluation measures for models' assessment over imbalanced data sets","volume":"3","author":"Bekkar","year":"2013","journal-title":"J. Inf. Eng. Appl."},{"key":"10.1016\/j.compbiomed.2021.104624_bib53","series-title":"Advances in Neural Information Processing Systems","first-page":"431","article-title":"Understanding variable importances in forests of randomised trees","author":"Louppe","year":"2013"},{"issue":"8","key":"10.1016\/j.compbiomed.2021.104624_bib54","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1016\/j.jclinepi.2015.02.010","article-title":"The precision\u2013recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases","volume":"68","author":"Ozenne","year":"2015","journal-title":"J. Clin. Epidemiol."},{"year":"2014","series-title":"Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach","author":"Hassanat","key":"10.1016\/j.compbiomed.2021.104624_bib55"},{"key":"10.1016\/j.compbiomed.2021.104624_bib56","doi-asserted-by":"crossref","first-page":"790","DOI":"10.3389\/fonc.2020.00790","article-title":"Machine learning-based models for prediction of toxicity outcomes in radiotherapy","volume":"10","author":"Isaksson","year":"2020","journal-title":"Front. Oncol."},{"issue":"3","key":"10.1016\/j.compbiomed.2021.104624_bib57","first-page":"712","article-title":"Validity of area-under-the-curve analysis to summarize effect in rheumatoid arthritis clinical trials","volume":"26","author":"Pham","year":"1999","journal-title":"J. Rheumatol."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib58","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1186\/1471-2407-14-711","article-title":"Factors modifying the risk for developing acute skin toxicity after whole-breast intensity-modulated radiotherapy","volume":"14","author":"De Langhe","year":"2014","journal-title":"BMC Canc."},{"issue":"2","key":"10.1016\/j.compbiomed.2021.104624_bib59","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0167-8140(03)00166-X","article-title":"Personal characteristics, therapy modalities and individual DNA repair capacity as predictive factors of acute skin toxicity in an unselected cohort of breast cancer patients receiving radiotherapy","volume":"69","author":"Twardella","year":"2003","journal-title":"Radiother. Oncol."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib60","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.clon.2003.08.005","article-title":"Impact of radiation therapy on acute toxicity in breast conservation therapy for early breast cancer","volume":"16","author":"Back","year":"2004","journal-title":"Clin. Oncol."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib61","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1186\/1748-717X-5-112","article-title":"Hypofractionated radiotherapy after conservative surgery for breast cancer: analysis of acute and late toxicity","volume":"5","author":"Deantonio","year":"2010","journal-title":"Radiat. Oncol."},{"issue":"10","key":"10.1016\/j.compbiomed.2021.104624_bib62","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1016\/j.clon.2011.04.011","article-title":"The Cambridge Breast Intensity-modulated Radiotherapy Trial: patient-and treatment-related factors that influence late toxicity","volume":"23","author":"Barnett","year":"2011","journal-title":"Clin. Oncol."},{"issue":"2","key":"10.1016\/j.compbiomed.2021.104624_bib63","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.radonc.2011.12.002","article-title":"Common variants of eNOS and XRCC1 genes may predict acute skin toxicity in breast cancer patients receiving radiotherapy after breast-conserving surgery","volume":"103","author":"Terrazzino","year":"2012","journal-title":"Radiother. Oncol."},{"issue":"5","key":"10.1016\/j.compbiomed.2021.104624_bib64","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1016\/j.breast.2013.07.047","article-title":"Smoking as an independent risk factor for severe skin reactions due to adjuvant radiotherapy for breast cancer","volume":"22","author":"Sharp","year":"2013","journal-title":"Breast"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib65","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1186\/1471-2407-13-230","article-title":"Standard or hypofractionated radiotherapy in the post-operative treatment of breast cancer: a retrospective analysis of acute skin toxicity and dose inhomogeneities","volume":"13","author":"Tortorelli","year":"2013","journal-title":"BMC Canc."},{"issue":"4","key":"10.1016\/j.compbiomed.2021.104624_bib66","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1007\/s12553-020-00446-1","article-title":"Machine learning prediction of susceptibility to visceral fat associated diseases","volume":"10","author":"Aldraimli","year":"2020","journal-title":"Health Technol."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib67","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1186\/1471-2105-8-25","article-title":"Bias in random forest variable importance measures: illustrations, sources and a solution","volume":"8","author":"Strobl","year":"2007","journal-title":"BMC Bioinf."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.104624_bib68","first-page":"25","article-title":"Feature selection for gene expression using model-based entropy","volume":"7","author":"Zhu","year":"2008","journal-title":"IEEE ACM Trans. Comput. Biol. Bioinf"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.104624_bib69","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0118432","article-title":"The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets","volume":"10","author":"Saito","year":"2015","journal-title":"PloS One"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.104624_bib70","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1088\/0031-9155\/53\/3\/014","article-title":"Lyman\u2013Kutcher\u2013Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data","volume":"53","author":"Semenenko","year":"2008","journal-title":"Phys. Med. Biol."},{"issue":"3","key":"10.1016\/j.compbiomed.2021.104624_bib71","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.radonc.2011.10.022","article-title":"Parameters for the lyman kutcher burman (LKB) model of normal tissue complication probability (NTCP) for specific rectal complications observed in clinical practise","volume":"102","author":"Gulliford","year":"2012","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2021.104624_bib72","doi-asserted-by":"crossref","first-page":"2153","DOI":"10.3389\/fonc.2020.575909","article-title":"External validation of prediction models for acute skin toxicity in the REQUITE breast cohort","volume":"10","author":"Rattay","year":"2020","journal-title":"Front. Oncol."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482521004182?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482521004182?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,30]],"date-time":"2024-01-30T02:09:37Z","timestamp":1706580577000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482521004182"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":65,"alternative-id":["S0010482521004182"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2021.104624","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A data science approach for early-stage prediction of Patient's susceptibility to acute side effects of advanced radiotherapy","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2021.104624","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Crown Copyright \u00a9 2021 Published by Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104624"}}