iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.COMPBIOMED.2020.104142
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T17:06:47Z","timestamp":1724864807361},"reference-count":161,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2021,2]]},"DOI":"10.1016\/j.compbiomed.2020.104142","type":"journal-article","created":{"date-parts":[[2020,11,26]],"date-time":"2020-11-26T00:58:32Z","timestamp":1606352312000},"page":"104142","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning"],"prefix":"10.1016","volume":"129","author":[{"given":"Mohammad R.","family":"Salmanpour","sequence":"first","affiliation":[]},{"given":"Mojtaba","family":"Shamsaei","sequence":"additional","affiliation":[]},{"given":"Abdollah","family":"Saberi","sequence":"additional","affiliation":[]},{"given":"Ghasem","family":"Hajianfar","sequence":"additional","affiliation":[]},{"given":"Hamid","family":"Soltanian-Zadeh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9980-2403","authenticated-orcid":false,"given":"Arman","family":"Rahmim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2020.104142_bib1","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1002\/ana.21472","article-title":"Nonmotor manifestations of Parkinson's disease","volume":"64","author":"Simuni","year":"2008","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib2","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1016\/S1353-8020(09)70770-9","article-title":"Non-motor extranigral signs and symptoms in Parkinson's disease","volume":"3","author":"Wolter","year":"2009","journal-title":"Park. Relat. Disord."},{"key":"10.1016\/j.compbiomed.2020.104142_bib3","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.jns.2009.08.022","article-title":"Non-motor fluctuations in Parkinson's disease: clinical spectrum and classification","volume":"289","author":"Bayulkem","year":"2010","journal-title":"J. Neurol. Sci."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104142_bib4","first-page":"275","article-title":"Polymorphisms of DRD2 and DRD3 genes and Parkinson's disease: a meta-analysis","volume":"2","author":"Dai","year":"2014","journal-title":"Biomedica"},{"issue":"5","key":"10.1016\/j.compbiomed.2020.104142_bib5","first-page":"735","article-title":"The second brain and Parkinson's disease","volume":"30","author":"Lebouvier","year":"2009","journal-title":"EGN"},{"key":"10.1016\/j.compbiomed.2020.104142_bib6","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1002\/gps.2374","article-title":"Side of motor symptom onset and pain complaints in Parkinson's disease","volume":"25","author":"McNamara","year":"2010","journal-title":"Int. J. Geriatr. Psychiatr."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib7","doi-asserted-by":"crossref","first-page":"1278","DOI":"10.1002\/hbm.22701","article-title":"Dopaminergic basis for impairments in functional connectivity across subdivisions of the striatum in Parkinson's disease","volume":"36","author":"Bell","year":"2015","journal-title":"Mum Brain Mapp"},{"issue":"221","key":"10.1016\/j.compbiomed.2020.104142_bib8","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1016\/j.bbr.2009.12.048","article-title":"The cholinergic system and Parkinson disease","volume":"2","author":"Bohnen","year":"2011","journal-title":"Behav. Brain Res."},{"issue":"5","key":"10.1016\/j.compbiomed.2020.104142_bib9","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1016\/j.neuropsychologia.2013.02.003","article-title":"Effects of asymmetric dopamine depletion on sensitivity to rewarding and aversive stimuli in Parkinson's disease","volume":"51","author":"Maril","year":"2013","journal-title":"Neuropsychologia"},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib10","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1016\/j.neuropsychologia.2012.04.018","article-title":"Hemispheric asymmetries and prosodic emotion recognition deficits in Parkinson's disease","volume":"50","author":"Ventura","year":"2012","journal-title":"Neuropsychologia"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib11","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1002\/mds.22896","article-title":"Motor laterality asymmetry and nonmotor symptoms in Parkinson's disease","volume":"25","author":"Cubo","year":"2010","journal-title":"Mov. Disord."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib12","first-page":"53","article-title":"NON-MOTOR symptoms OF Parkinson\u2019s disease","volume":"2","author":"GabrielHou","year":"2007","journal-title":"Int. J. Gerontol."},{"issue":"7","key":"10.1016\/j.compbiomed.2020.104142_bib13","doi-asserted-by":"crossref","first-page":"1370","DOI":"10.2741\/4649","article-title":"Hoehn and Yahr staging of Parkinson's disease in relation to neuropsychological measures","volume":"23","author":"Modestino","year":"2018","journal-title":"Front. Biosci."},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib14","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1002\/mds.21500","article-title":"Duodenal levodopa infusion for advanced Parkinson's disease: 12\u2010month treatment outcome","volume":"22","author":"Antonini","year":"2007","journal-title":"International Parkinson and Movement Disorder Society"},{"key":"10.1016\/j.compbiomed.2020.104142_bib15","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1212\/01.wnl.0000252368.25106.b6","article-title":"Pathologic gambling in patients with restless legs syndrome treated with dopaminergic agonists legs syndrome treated with dopaminergic agonists","volume":"68","author":"Tippmann-Peikert","year":"2007","journal-title":"Neurology"},{"key":"10.1016\/j.compbiomed.2020.104142_bib16","doi-asserted-by":"crossref","first-page":"1744","DOI":"10.1172\/JCI29178","article-title":"Diagnosis and treatment of Parkinson disease:molecules to medicine","volume":"7","author":"Savitt","year":"2006","journal-title":"JCI"},{"key":"10.1016\/j.compbiomed.2020.104142_bib17","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1056\/NEJM199810153391607","article-title":"Parkinson's disease. Second of two parts","author":"Lang","year":"1998","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.compbiomed.2020.104142_bib18","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1136\/jnnp.67.3.300","article-title":"The sydny multicentre stuly of Parkinson's Disease : progression and mortality at 10 years","volume":"67","author":"Hely","year":"1999","journal-title":"J Neurol Neurosurg Psychiarty"},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib19","first-page":"886","article-title":"Prediction of outcome of physiotherapy in advanced Parkinson's disease","volume":"16","author":"Nieuwboer","year":"2002","journal-title":"SAGE Journals"},{"key":"10.1016\/j.compbiomed.2020.104142_bib20","doi-asserted-by":"crossref","first-page":"287","DOI":"10.3233\/JPD-2011-11016","article-title":"Predicting outcomes in Parkinson's disease: comparison of simple motor performance measures and the Unified Parkinson's Disease Rating Scale-III","volume":"3","author":"Grill","year":"2011","journal-title":"J. Parkinsons Dis."},{"key":"10.1016\/j.compbiomed.2020.104142_bib21","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.nicl.2017.08.021","article-title":"Improved prediction of outcome in Parkinson's disease using radiomics analysis of longitudinal DAT SPECT images","volume":"16","author":"Rahmim","year":"2017","journal-title":"Neuroimage: Clinical"},{"key":"10.1016\/j.compbiomed.2020.104142_bib22","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1002\/mds.27190","article-title":"Prediction of cognitive worsening in de novo Parkinson's disease: clinical use of biomarkers","volume":"32","author":"Arnaldi","year":"2017","journal-title":"Mov. Disord."},{"key":"10.1016\/j.compbiomed.2020.104142_bib23","first-page":"213","article-title":"Prediction of cognitive decline in PD","volume":"14","author":"Fyfe","year":"2018","journal-title":"Nat. Rev. Neurol."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib24","first-page":"1","article-title":"Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson's disease","volume":"8","author":"Gao","year":"2018","journal-title":"Sci. Rep."},{"article-title":"Machine learning methods for optimal prediction of outcome in Parkinson's disease","year":"2018","series-title":"IEEE Nucl. Sci. Symp. Conf. Record, Sydney","author":"Salmanpour","key":"10.1016\/j.compbiomed.2020.104142_bib25"},{"key":"10.1016\/j.compbiomed.2020.104142_bib26","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.ejmp.2019.12.022","article-title":"Machine learning methods for optimal prediction of motor outcome in Parkinson's disease","volume":"69","author":"Salmanpour","year":"2020","journal-title":"Phys. Med."},{"key":"10.1016\/j.compbiomed.2020.104142_bib27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compbiomed.2019.103347","article-title":"Optimized machine learning methods for prediction of cognitive outcome in Parkinson's disease","volume":"111","author":"salmanpour","year":"2019","journal-title":"Comput. Biol. Med."},{"article-title":"Using deep-learning to predict outcome of patients with Parkinson's disease","year":"2018","series-title":"IEEE Nucl. Sci. Symp. Conf. Record, Sydney","author":"Leung","key":"10.1016\/j.compbiomed.2020.104142_bib28"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib29","first-page":"298","article-title":"Feature relevance analysis and classification of Parkinson's disease TeleMonitoring data through data mining\u201d","volume":"2","author":"Ramani","year":"2012","journal-title":"Int. J. Adv. Res. Comput. Sci. Software Eng."},{"year":"2016","series-title":"Accuracy Improvement for Predicting Parkinson's Disease Progression","author":"Nilashi","key":"10.1016\/j.compbiomed.2020.104142_bib30"},{"issue":"5","key":"10.1016\/j.compbiomed.2020.104142_bib31","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1007\/s00415-008-0782-1","article-title":"Clinical heterogeneity in newly diagnosed Parkinson's disease","volume":"255","author":"Post","year":"2008","journal-title":"J. Neurol."},{"issue":"71","key":"10.1016\/j.compbiomed.2020.104142_bib32","doi-asserted-by":"crossref","first-page":"710","DOI":"10.1001\/jamaneurol.2014.391","article-title":"Measuring disease progression in early Parkinson disease: the national institutes of health exploratory trials in Parkinson disease (NET-PD) experience","volume":"6","author":"Parashos","year":"2014","journal-title":"JAMA Neurol"},{"key":"10.1016\/j.compbiomed.2020.104142_bib33","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1136\/jnnp-2016-314524","article-title":"Subtle motor disturbances in PREDICT-PD participants","volume":"88","author":"Noyce","year":"2017","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"10.1016\/j.compbiomed.2020.104142_bib34","first-page":"1","article-title":"Parkinson's disease diagnosis using neostriatum radiomic features based on T2-weighted magnetic resonance imaging","volume":"11","author":"Lui","year":"2020","journal-title":"Front. Neurol."},{"issue":"supplement 1","key":"10.1016\/j.compbiomed.2020.104142_bib35","article-title":"Artificial neural network based outcome prediction in DAT SPECT imaging of Parkinson's Disease","volume":"58","author":"Tang","year":"2017","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.compbiomed.2020.104142_bib36","doi-asserted-by":"crossref","first-page":"e1","DOI":"10.1016\/j.nicl.2016.02.012","article-title":"Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments","volume":"12","author":"Rahmim","year":"2016","journal-title":"Neuroimage: Clinical"},{"key":"10.1016\/j.compbiomed.2020.104142_bib37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fnagi.2019.00167","article-title":"Radiomic features of the nigrosome region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson's disease","volume":"11","author":"Cheng","year":"2019","journal-title":"Front. Aging Neurosci."},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib38","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1136\/jnnp-2014-310256","article-title":"What do patients with scans without evidence of dopaminergic deficit (SWEDD) have? New evidence and continuing controversies","volume":"87","author":"Erro","year":"2015","journal-title":"J. Neurol. Neurosurg. Psychiatr."},{"issue":"9","key":"10.1016\/j.compbiomed.2020.104142_bib39","first-page":"667","article-title":"Dopamine transporter imaging in clinically unclear cases of parkinsonism and the importance of Scans without Evidence of Dopaminergic Deficit (SWEDDs)","volume":"70","author":"Marco","year":"2010","journal-title":"Arq. Neuro. Psiquiatr."},{"issue":"23","key":"10.1016\/j.compbiomed.2020.104142_bib40","doi-asserted-by":"crossref","first-page":"1","DOI":"10.21037\/atm.2019.11.26","article-title":"Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls","volume":"7","author":"Wu","year":"2019","journal-title":"Ann. Transl. Med."},{"article-title":"Radiomics analysis of longitudinal DaTscan images for improved progression tracking in Parkinson's disease","year":"2017","series-title":"Journal of Nuclear Medicine","author":"Huang","key":"10.1016\/j.compbiomed.2020.104142_bib41"},{"issue":"249","key":"10.1016\/j.compbiomed.2020.104142_bib42","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1007\/PL00007856","article-title":"The heterogeneity of idiopathic Parkinson's disease","volume":"2","author":"Foltynie","year":"2002","journal-title":"J. Neurol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib43","doi-asserted-by":"crossref","first-page":"454","DOI":"10.1002\/mds.25844","article-title":"Ime to redefine PD? Introductory statement of the MDS task force on the definition of Parkinson's disease","volume":"29","author":"Berg","year":"2014","journal-title":"Mov. Disord."},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib44","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1136\/jnnp.2003.033530","article-title":"Heterogeneity of Parkinson's disease in the early clinical stages using a datan driven approach","volume":"76","author":"Lewis","year":"2005","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"10.1016\/j.compbiomed.2020.104142_bib45","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0046813","article-title":"Parkinson subtypes progress differently in clinical course and imaging pattern","volume":"7","author":"Eggers","year":"2012","journal-title":"PloS One"},{"issue":"7","key":"10.1016\/j.compbiomed.2020.104142_bib46","doi-asserted-by":"crossref","first-page":"1959","DOI":"10.1093\/brain\/awx118","article-title":"Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression","volume":"140","author":"Fereshtehnejad","year":"2017","journal-title":"Brain"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib47","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1002\/1531-8257(199901)14:1<10::AID-MDS1005>3.0.CO;2-4","article-title":"A data-driven approach to the study of heterogeneity in idiopathic Parkinson's disease: identification of three distinct subtypes","volume":"14","author":"Graham","year":"1999","journal-title":"Mov. Disord."},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib48","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0070244","article-title":"The heterogeneity of early Parkinson's disease: a cluster analysis on newly diagnosed untreated patients","volume":"8","author":"Erro","year":"2013","journal-title":"PloS One"},{"key":"10.1016\/j.compbiomed.2020.104142_bib49","doi-asserted-by":"crossref","first-page":"s77","DOI":"10.1007\/s100720200078","article-title":"Clinical predictors in Parkinson's","volume":"23","author":"Gasparoli","year":"2002","journal-title":"Neurol. Sci."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104142_bib50","doi-asserted-by":"crossref","first-page":"1042","DOI":"10.1007\/s00415-010-5878-8","article-title":"The association between motor subtypes and alexithymia in de novo Parkinson's disease","volume":"258","author":"Poletti","year":"2010","journal-title":"J. Neurol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib51","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1111\/ejn.13435","article-title":"Dopamine and noradrenaline, but not serotonin, in the the human claustrum are greatly reduced in patients with Parkinson's disease: possible functional implications","volume":"45","author":"Sitte","year":"2017","journal-title":"Eur. J. Neurosci."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib52","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1007\/BF00505805","article-title":"Pars compacta of the substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake","volume":"313","author":"Hodge","year":"1980","journal-title":"Naunyn-Schmiedeberg\u2019s Arch. Pharmacol."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib53","doi-asserted-by":"crossref","first-page":"584","DOI":"10.1001\/archneur.63.4.584","article-title":"Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra","volume":"63","author":"Greffard","year":"2006","journal-title":"Arch. Neurol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib54","doi-asserted-by":"crossref","first-page":"1478","DOI":"10.1212\/01.wnl.0000310432.92489.90","article-title":"Functional imaging in Parkinson disease","volume":"15","author":"Nandhagopal","year":"2008","journal-title":"Neurology"},{"key":"10.1016\/j.compbiomed.2020.104142_bib55","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fncel.2016.00293","article-title":"Early degeneration of both dopaminergic and serotonergic axons \u2013 a common mechanism in Parkinson's disease","volume":"10","author":"Grosch","year":"2016","journal-title":"Front. Cell. Neurosci."},{"key":"10.1016\/j.compbiomed.2020.104142_bib56","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1212\/WNL.17.5.427","article-title":"Parkinsonism: onset, progression and mortality","volume":"5","author":"Hoehn","year":"1967","journal-title":"Neurology"},{"key":"10.1016\/j.compbiomed.2020.104142_bib57","first-page":"1","article-title":"Review and assessment OF the rating scales OF Parkinson\u2019s disease","volume":"5","author":"Venkatesh","year":"2018","journal-title":"Int. J. Appl. Sci."},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib58","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1007\/s00415-006-0483-6","article-title":"Association of daytime sleepiness with nigrostriatal dopaminergic degeneration in early Parkinson's disease","volume":"254","author":"Happe","year":"2007","journal-title":"J. Neurol."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib59","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.parkreldis.2014.01.002","article-title":"Cognitive functions in Parkinson's disease: relation to disease severity and hallucination","volume":"20","author":"Wakamori","year":"2014","journal-title":"Park. Relat. Disord."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib60","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.parkreldis.2013.09.025","article-title":"The influence of age and gender on motor and non-motor features of early Parkinson's disease: initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort","volume":"20","author":"Szewczyk-Krolikowski","year":"2014","journal-title":"Park. Relat. Disord."},{"key":"10.1016\/j.compbiomed.2020.104142_bib61","first-page":"275","article-title":"Heterogeneity of Parkinson's disease","volume":"77","author":"Schrag","year":"2006","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib62","first-page":"996","article-title":"Clinical subtypes of Parkinson's disease","volume":"27","author":"van Rooden","year":"2011","journal-title":"Mov. Disord."},{"issue":"5","key":"10.1016\/j.compbiomed.2020.104142_bib63","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.parkreldis.2008.09.003","article-title":"The association between motor subtypes and psychopathology in Parkinson's disease","volume":"15","author":"Reijnders","year":"2009","journal-title":"Park. Relat. Disord."},{"issue":"12","key":"10.1016\/j.compbiomed.2020.104142_bib64","doi-asserted-by":"crossref","first-page":"1279","DOI":"10.1136\/jnnp-2018-318337","article-title":"Developing and validating Parkinson's disease subtypes and their motor and cognitive progression","volume":"89","author":"Lawton","year":"2018","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"issue":"9","key":"10.1016\/j.compbiomed.2020.104142_bib65","first-page":"694","article-title":"Clinical heterogeneity in patients with early-stage Parkinson's disease: a cluster analysis","volume":"12","author":"Liu","year":"2011","journal-title":"Biomedicine & Biotechnology)"},{"key":"10.1016\/j.compbiomed.2020.104142_bib66","doi-asserted-by":"crossref","first-page":"269","DOI":"10.3233\/JPD-140523","article-title":"Parkinson's disease subtypes in the oxford Parkinson disease centre (OPDC) discovery cohort","volume":"5","author":"Lawton","year":"2015","journal-title":"J. Parkinsons Dis."},{"key":"10.1016\/j.compbiomed.2020.104142_bib67","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fnagi.2017.00301","article-title":"Parkinson's disease subtypes identified from cluster Analysis of motor and non-motor symptoms","volume":"9","author":"Mu","year":"2017","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.compbiomed.2020.104142_bib68","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.parkreldis.2018.07.009","article-title":"Reproducibility of data-driven Parkinson's disease subtypes for clinical research","volume":"56","author":"Mestre","year":"2018","journal-title":"Park. Relat. Disord."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib69","first-page":"70","article-title":"A review OF studies ON machine learning techniques","volume":"1","author":"Singh","year":"2007","journal-title":"Int. J. Comput. Sci. Secur."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104142_bib70","doi-asserted-by":"crossref","first-page":"551","DOI":"10.2174\/1570159X13666141204221238","article-title":"Recent progress of imaging agents for Parkinson's disease","volume":"12","author":"Wu","year":"2014","journal-title":"Curr. Neuropharmacol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib71","doi-asserted-by":"crossref","first-page":"S268","DOI":"10.1016\/S1353-8020(08)70015-4","article-title":"Assessment of Parkinson's disease with imaging","volume":"13","author":"Brooks","year":"2007","journal-title":"Park. Relat. Disord."},{"year":"2019","series-title":"Quantitative Nuclear Medicine Imaging Using Advanced Image Reconstruction and Radiomics","author":"Ashrafinia","key":"10.1016\/j.compbiomed.2020.104142_bib72"},{"year":"2016","series-title":"Image Biomarker Standardisation Initiative","author":"Zwanenburg","key":"10.1016\/j.compbiomed.2020.104142_bib73"},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104142_bib74","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1148\/radiol.2020191145","article-title":"The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping","volume":"295","author":"Zwanenburg","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.compbiomed.2020.104142_bib75","doi-asserted-by":"crossref","first-page":"118","DOI":"10.18383\/j.tom.2019.00031","article-title":"Standardization in quantitative imaging: a multi-center comparison of radiomics features from different software packages on digital reference objects and patient datasets","volume":"6","author":"McNitt-Gray","year":"2020","journal-title":"Tomography"},{"issue":"Supplement 1","key":"10.1016\/j.compbiomed.2020.104142_bib76","article-title":"Application of texture and radiomics analysis to clinical myocardial perfusion SPECT imaging","volume":"59","author":"Ashrafinia","year":"2018","journal-title":"J. Nucl. Med."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104142_bib77","doi-asserted-by":"crossref","first-page":"1122","DOI":"10.1177\/0271678X15606718","article-title":"Exploring the use of shape and texture descriptors of positron emission tomography tracer distribution in imaging studies of neurodegenerative disease","volume":"36","author":"Klyuzhin","year":"2016","journal-title":"J. Cerebr. Blood Flow Metabol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib78","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.pneurobio.2011.09.005","article-title":"The Parkinson progression marker initiative (PPMI)","volume":"95","author":"Parkinson Progression Marker Initiative","year":"2011","journal-title":"Prog. Neurobiol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib79","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1007\/s12021-013-9204-3","article-title":"A review of feature reduction techniques in neuroimaging","volume":"12","author":"Mwangi","year":"2014","journal-title":"Neuroinformatics"},{"key":"10.1016\/j.compbiomed.2020.104142_bib80","doi-asserted-by":"crossref","first-page":"1664","DOI":"10.1016\/j.patcog.2013.10.009","article-title":"Efficient feature size reduction via predictive forward selection","volume":"47","author":"Reif","year":"2014","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.compbiomed.2020.104142_bib81","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.nicl.2015.11.003","article-title":"Studying depression using imaging and machine learning methods","volume":"10","author":"Patel","year":"2016","journal-title":"Neuroimage: Clinical"},{"issue":"1\u20133","key":"10.1016\/j.compbiomed.2020.104142_bib82","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/0169-7439(87)80084-9","article-title":"Principal component analysis","volume":"2","author":"Wold","year":"1987","journal-title":"Chemometr. Intell. Lab. Syst."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib83","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/s11063-004-0036-x","article-title":"An improved algorithm for kernel principal component analysis","volume":"22","author":"Wenming","year":"2005","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.compbiomed.2020.104142_bib84","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib85","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1037\/0022-0167.34.4.414","article-title":"Uses of factor analysis in counseling psychology research","volume":"34","author":"Tinsley","year":"1987","journal-title":"J. Counsel. Psychol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib86","article-title":"A nonlinear mapping for data structure analysis","volume":"5","author":"Sammon","year":"1969","journal-title":"IEEE Trans. Comput."},{"volume":"vol. 187","year":"2012","author":"Sun","key":"10.1016\/j.compbiomed.2020.104142_bib87"},{"key":"10.1016\/j.compbiomed.2020.104142_bib88","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1126\/science.290.5500.2319","article-title":"A global geometric framework for nonlinear dimensionality reduction","volume":"290","author":"Tenenbaum","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.compbiomed.2020.104142_bib89","first-page":"1","article-title":"Robust L-isomap with a novel landmark selection method","author":"Shi","year":"2017","journal-title":"Hindawi Mathematical Problems in Engineering"},{"first-page":"586","year":"2001","series-title":"Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering","author":"Belkin","key":"10.1016\/j.compbiomed.2020.104142_bib90"},{"year":"2010","series-title":"Temporal Extension of Laplacian Eigenmaps for Unsupervised Dimensionality Reduction of Time Series","author":"Lewandowski","key":"10.1016\/j.compbiomed.2020.104142_bib91"},{"key":"10.1016\/j.compbiomed.2020.104142_bib92","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2000","journal-title":"Science"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib93","first-page":"27","article-title":"Review of the development of multidimensional scaling methods","volume":"41","author":"Mead","year":"1992","journal-title":"Journal of the Royal Statistical Society. Series D (The Statistician)"},{"issue":"21","key":"10.1016\/j.compbiomed.2020.104142_bib94","doi-asserted-by":"crossref","first-page":"7426","DOI":"10.1073\/pnas.0500334102","article-title":"Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps","volume":"102","author":"Coifman","year":"2005","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib95","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/j.acha.2006.04.006","article-title":"Diffusion maps","volume":"21","author":"Coifman","year":"2006","journal-title":"Appl. Comput. Harmon. Anal."},{"issue":"10","key":"10.1016\/j.compbiomed.2020.104142_bib96","doi-asserted-by":"crossref","first-page":"1215","DOI":"10.1002\/jcc.10234","article-title":"Stochastic proximity embedding","volume":"24","author":"Agrafiotis","year":"2003","journal-title":"J. Comput. Chem."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib97","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.trit.2016.11.004","article-title":"A review on Gaussian process latent variable models","volume":"1","author":"Li","year":"2016","journal-title":"CAAI Transactions on Intelligence Technology"},{"key":"10.1016\/j.compbiomed.2020.104142_bib98","first-page":"243","article-title":"Learning for larger datasets with the Gaussian process latent variable model","volume":"2","author":"Lawrence","year":"2007","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compbiomed.2020.104142_bib99","first-page":"857","article-title":"Stochastic neighbor embedding","volume":"15","author":"Hinton","year":"2003","journal-title":"Adv. Neural Inf. Process. Syst."},{"article-title":"Fast stochastic neighbor embedding: a trust-region algorithm","year":"2004","series-title":"IEEE International Joint Conference on Neural Networks, Budapest","author":"Nam","key":"10.1016\/j.compbiomed.2020.104142_bib100"},{"issue":"5786","key":"10.1016\/j.compbiomed.2020.104142_bib101","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib102","first-page":"4","article-title":"Statistical pattern recognition: a review","volume":"22","author":"Jain","year":"2000","journal-title":"IEEE"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib103","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1145\/331499.331504","article-title":"Data clustering: a review","volume":"31","author":"Jain","year":"1999","journal-title":"ACM Computing"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib104","first-page":"1","article-title":"Clustering algorithms: a comparative approach","volume":"14","author":"Rodriguez1","year":"2019","journal-title":"PloS One"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib105","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1109\/72.846731","article-title":"Clustering of the self-organizing map","volume":"11","author":"Vesanto","year":"2000","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"5814","key":"10.1016\/j.compbiomed.2020.104142_bib106","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1126\/science.1136800","article-title":"Clustering by passing messages between data points","volume":"315","author":"Frey","year":"2007","journal-title":"Science"},{"key":"10.1016\/j.compbiomed.2020.104142_bib107","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1007\/s00357-014-9161-z","article-title":"Ward's hierarchical agglomerative clustering method:","volume":"31","author":"Murtagh","year":"2014","journal-title":"J. Classif."},{"key":"10.1016\/j.compbiomed.2020.104142_bib108","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/S0304-3975(01)00239-0","article-title":"Optimal algorithms for complete linkage clustering in d dimensions","volume":"286","author":"Krznaric","year":"2002","journal-title":"Theor. Comput. Sci."},{"key":"10.1016\/j.compbiomed.2020.104142_bib109","unstructured":"S. Michener, \"A Statistical Method for Evaluating Systematic Relationships,\" University of Kansas Science Bulletin, vol. vol. 38, pp. 1409-1438, 38.."},{"issue":"7","key":"10.1016\/j.compbiomed.2020.104142_bib110","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1109\/TPAMI.2002.1017616","article-title":"An efficient k-means clustering algorithm: analysis and implementation","volume":"24","author":"Kanungo","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib111","first-page":"292","article-title":"Application of k-means clustering algorithm for prediction of students' academic performance","volume":"7","author":"Oyelade","year":"2010","journal-title":"Int. J. Comput. Sci. Inf. Secur."},{"key":"10.1016\/j.compbiomed.2020.104142_bib112","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1016\/j.procs.2016.02.095","article-title":"Analysis of K-means and K-medoids algorithm for big data","volume":"28","author":"Arora","year":"2016","journal-title":"Procedia Computer Science"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib113","doi-asserted-by":"crossref","first-page":"1","DOI":"10.14810\/ijscmc.2014.3301","article-title":"K-MEDOIDS clustering using partitioning around medoids for performing face recognition","volume":"3","author":"Bhat","year":"2014","journal-title":"International Journal of Soft Computing, Mathematics and Control"},{"key":"10.1016\/j.compbiomed.2020.104142_bib114","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1007\/s00500-007-0247-y","article-title":"A particular Gaussian mixture model for clustering and its application to image retrieval","volume":"12","author":"Sahbi","year":"2008","journal-title":"Soft Computing"},{"key":"10.1016\/j.compbiomed.2020.104142_bib115","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S1042-8143(05)80020-2","article-title":"Decision tree design using information theory","volume":"2","author":"RodneyOD","year":"1990","journal-title":"Knowl. Acquis."},{"issue":"12","key":"10.1016\/j.compbiomed.2020.104142_bib116","first-page":"1","article-title":"Survey paper on improved methods of ID3 decision tree","volume":"3","author":"Chourasia","year":"2013","journal-title":"International Journal of Scientific and Research Publications"},{"year":"2002","series-title":"Bayesian Methods for Nonlinear Classification and Regression","author":"Denison","key":"10.1016\/j.compbiomed.2020.104142_bib117"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib118","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: a library for support vector machines","volume":"2","author":"Chung Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"10.1016\/j.compbiomed.2020.104142_bib119","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-Vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compbiomed.2020.104142_bib120","first-page":"265","article-title":"On the algorithmic implementation of multiclass kernel-based vector machines","volume":"2","author":"Crammer","year":"2001","journal-title":"J. Mach. Learn"},{"key":"10.1016\/j.compbiomed.2020.104142_bib121","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/B978-0-12-809633-8.20473-1","article-title":"Bayes' theorem and naive Bayes classifier","volume":"1","author":"Berrar","year":"2019","journal-title":"Encyclopedia of Bioinformatics and Computational Biology"},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib122","doi-asserted-by":"crossref","first-page":"787","DOI":"10.2478\/amcs-2013-0059","article-title":"Learning the naive Bayes classifier with optimization models","volume":"23","author":"Taheri","year":"2013","journal-title":"Int. J. Appl. Math. Comput. Sci."},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib123","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1080\/00031305.1992.10475879","article-title":"An introduction to kernel and nearest-neighbor nonparametric regression","volume":"46","author":"Altman","year":"1992","journal-title":"Am. Statistician"},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib124","first-page":"18","article-title":"An improved k-nearest neighbor classification using genetic algorithm","volume":"7","author":"Suguna","year":"2010","journal-title":"IJCSI International Journal of Computer Science Issues"},{"article-title":"EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers","year":"2009","series-title":"CHI '09: CHI Conference on Human Factors in Computing Systems, Boston MA, New York","author":"Talbot","key":"10.1016\/j.compbiomed.2020.104142_bib125"},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104142_bib126","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1109\/TNNLS.2018.2844332","article-title":"Online active learning ensemble framework","volume":"30","author":"Shan","year":"2018","journal-title":"IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib127","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1002\/sam.11367","article-title":"Sparse Fisher's linear discriminant analysis for partially labeled data","volume":"11","author":"Lu","year":"2018","journal-title":"Stat. Anal. Data Min."},{"year":"1992","series-title":"Discriminant Analysis and Statistical Pattern Recognition","author":"McLachlan","key":"10.1016\/j.compbiomed.2020.104142_bib128"},{"key":"10.1016\/j.compbiomed.2020.104142_bib129","doi-asserted-by":"crossref","first-page":"837","DOI":"10.1007\/s10489-014-0562-9","article-title":"Probabilistic neural network training procedure based on Q(0)-learning algorithm in medical data classification","volume":"41","author":"Kusy","year":"2014","journal-title":"Appl. Intell."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib130","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1109\/72.80210","article-title":"Probabilistic neural networks and the polynomial adaline as complementary techniques for classification","volume":"1","author":"Specht","year":"1990","journal-title":"IEEE Trans. Neural Network."},{"key":"10.1016\/j.compbiomed.2020.104142_bib131","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/3025057","article-title":"Error-correcting Output codes in classification of of human induced pluripotent stem cell colony images","volume":"2016","author":"Joutsijoki","year":"2016","journal-title":"BioMed Res. Int."},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104142_bib132","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1002\/j.1538-7305.1950.tb00463.x","article-title":"Error detecting and error correcting codes","volume":"29","author":"Hamming","year":"1950","journal-title":"Bell System Technical Journal"},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib133","first-page":"378","article-title":"Back propagation algorithm: the best algorithm","volume":"9","author":"Alsmadi","year":"2009","journal-title":"IJCSNS International Journal of Computer Science and Network Security"},{"issue":"9","key":"10.1016\/j.compbiomed.2020.104142_bib134","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Leaner Representations by back-Propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.compbiomed.2020.104142_bib135","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"5","key":"10.1016\/j.compbiomed.2020.104142_bib136","first-page":"272","article-title":"Random forests and decision Trees","volume":"9","author":"Jehad","year":"2012","journal-title":"IJCSI International Journal of Computer Science Issues"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib137","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1109\/72.822523","article-title":"Existence and learning of oscillations in recurrent neural networks","volume":"11","author":"Townley","year":"2000","journal-title":"IEEE Trans. Neural Network."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104142_bib138","first-page":"3","article-title":"Investigation of financial market prediction by recurrent neural network","volume":"11","author":"Maknickiene","year":"2011","journal-title":"Innovative Infotechnologies for Science, Business and Education"},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104142_bib139","first-page":"17","article-title":"A study of applications of RBF network","volume":"94","author":"Arora","year":"2014","journal-title":"Int. J. Comput. Appl."},{"issue":"15","key":"10.1016\/j.compbiomed.2020.104142_bib140","first-page":"845","article-title":"Local linear model Trees (LOLIMOT) toolbox for nonlinear system identification","volume":"33","author":"Nelles","year":"2000","journal-title":"science Direct (IFAC System Identification)"},{"key":"10.1016\/j.compbiomed.2020.104142_bib141","first-page":"251","article-title":"Modeling of internal combustion engine emissions by","volume":"3","author":"Mart\u00ednez-Morales","year":"2012","journal-title":"SciVerse Science Direct"},{"year":"2018","series-title":"Mathematical Statistics : an Introduction to Likelihood Based Inference","author":"Rossi","key":"10.1016\/j.compbiomed.2020.104142_bib142"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib143","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/S0022-2496(02)00028-7","article-title":"Tutorial on maximum likelihood estimation","volume":"47","author":"Myung","year":"2003","journal-title":"J. Math. Psychol."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104142_bib144","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1109\/TGRS.1987.289752","article-title":"Gaussian maximum likelihood and contextual classification algorithms for multicrop classification","volume":"GE-25","author":"Zenzo","year":"1987","journal-title":"IEEE Trans. Geosci. Rem. Sens."},{"key":"10.1016\/j.compbiomed.2020.104142_bib145","doi-asserted-by":"crossref","first-page":"88","DOI":"10.2481\/dsj.007-020","article-title":"CVAP: validation for cluster Analyses","volume":"8","author":"Wang","year":"2009","journal-title":"Data Sci. J."},{"issue":"14","key":"10.1016\/j.compbiomed.2020.104142_bib146","doi-asserted-by":"crossref","first-page":"1787","DOI":"10.1093\/bioinformatics\/btg232","article-title":"CLICK and EXPANDER: a system for clustering and visualizing gene expression data","volume":"19","author":"Sharan","year":"2003","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2020.104142_bib147","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.1214\/13-EJS833","article-title":"Inference for the mean of large p small n data: a finite-sample high-dimensional generalization of Hotelling's theorem","volume":"7","author":"Secchi","year":"2013","journal-title":"Electronic Journal of Statistics"},{"issue":"5","key":"10.1016\/j.compbiomed.2020.104142_bib148","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.14336\/AD.2019.0112","article-title":"Subtyping of Parkinson's disease - where are we up to?","volume":"10","author":"Qian","year":"2019","journal-title":"Aging and Disease"},{"key":"10.1016\/j.compbiomed.2020.104142_bib149","doi-asserted-by":"crossref","first-page":"1724","DOI":"10.1001\/archneur.59.11.1724","article-title":"Predicting motor decline and disability in Parkinson disease","volume":"59","author":"Marras","year":"2002","journal-title":"Arch. Neurol."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104142_bib150","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1007\/BF00169811","article-title":"Technetium-99m hexamethylpropylene amine oxime single photon emission tomography of the brain in early Parkinson's disease: correlation with dementia and lateralization","volume":"20","author":"Wang","year":"1993","journal-title":"Eur. J. Nucl. Med."},{"key":"10.1016\/j.compbiomed.2020.104142_bib151","doi-asserted-by":"crossref","first-page":"744","DOI":"10.1097\/00006231-199213100-00007","article-title":"Cognition and 99Tcm-HMPAO SPECT in Parkin's Disease","volume":"13","author":"Lui","year":"1992","journal-title":"Nucl. Med. Commun."},{"key":"10.1016\/j.compbiomed.2020.104142_bib152","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/S0304-3940(98)00928-8","article-title":"Relationships between striatal dopamine denervation and frontal executive tests in Parkinson's disease","volume":"260","author":"Marie","year":"1999","journal-title":"Neurosci. Lett."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib153","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1002\/ana.410260107","article-title":"Dementia in parhson's disease is related to neuronal loss in the medial substantia nigra","volume":"26","author":"Rinne","year":"1988","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib154","doi-asserted-by":"crossref","first-page":"1727","DOI":"10.1093\/brain\/115.6.1727","article-title":"FRONTO-STRIATAL cognitive deficits at different stages OF Parkinson's disease","volume":"115","author":"Owen","year":"1992","journal-title":"Brain"},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104142_bib155","doi-asserted-by":"crossref","first-page":"1095","DOI":"10.1002\/mds.26510","article-title":"Nonmotor features of Parkinson's disease subtypes","volume":"31","author":"Marras","year":"2016","journal-title":"Mov. Disord."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104142_bib156","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1097\/00005072-199111000-00006","article-title":"The neuropathologic basis of different clinical subgroups of Parkinson's disease","volume":"50","author":"Paulus","year":"1991","journal-title":"J. Neuropathol. Exp. Neurol."},{"key":"10.1016\/j.compbiomed.2020.104142_bib157","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1007\/978-3-7091-6139-5_33","article-title":"Recent developments in the pathology of Parkinson's disease","volume":"62","author":"Jellinger","year":"2002","journal-title":"J. Neural. Transm. Suppl."},{"key":"10.1016\/j.compbiomed.2020.104142_bib158","doi-asserted-by":"crossref","first-page":"2947","DOI":"10.1093\/brain\/awp234","article-title":"A clinico-pathological study of subtypes in Parkinson's disease","volume":"132","author":"Selikhova","year":"2009","journal-title":"Brain"},{"issue":"23","key":"10.1016\/j.compbiomed.2020.104142_bib159","doi-asserted-by":"crossref","first-page":"1428","DOI":"10.1002\/mds.21667","article-title":"Quality of life in Parkinson's disease: the relative importance of the symptoms","volume":"10","author":"Rahman","year":"2008","journal-title":"Mov. Disord."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104142_bib160","first-page":"1","article-title":"Data-driven subtyping of Parkinson's disease using longitudinal clinical records: a cohort study","volume":"9","author":"Zhang","year":"2019","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2020.104142_bib161","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1016\/j.parkreldis.2014.08.009","article-title":"Calculating clinical progression rates in Parkinson's disease: methods matter","volume":"20","author":"Marinus","year":"2014","journal-title":"Park. Relat. Disord."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S001048252030473X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S001048252030473X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,18]],"date-time":"2024-08-18T02:26:03Z","timestamp":1723947963000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S001048252030473X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2]]},"references-count":161,"alternative-id":["S001048252030473X"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.compbiomed.2020.104142","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2021,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2020.104142","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104142"}}