iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.CMPB.2023.107724
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,15]],"date-time":"2024-08-15T02:09:35Z","timestamp":1723687775965},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.cmpb.2023.107724","type":"journal-article","created":{"date-parts":[[2023,7,20]],"date-time":"2023-07-20T17:05:04Z","timestamp":1689872704000},"page":"107724","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Unsupervised dimensionality reduction of medical hyperspectral imagery in tensor space"],"prefix":"10.1016","volume":"240","author":[{"given":"Hongmin","family":"Gao","sequence":"first","affiliation":[]},{"given":"Meiling","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2741-8963","authenticated-orcid":false,"given":"Xinyu","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Xueying","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Chenming","family":"Li","sequence":"additional","affiliation":[]},{"given":"Qin","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8404-2464","authenticated-orcid":false,"given":"Peipei","family":"Xu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2023.107724_bib0001","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/15384047.2022.2162807","article-title":"Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma","volume":"24","author":"Chen","year":"2023","journal-title":"Cancer. Biol. Ther."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107724_bib0002","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1038\/nrclinonc.2017.157","article-title":"Cholangiocarcinoma - evolving concepts and therapeutic strategies","volume":"15","author":"Rizvi","year":"2018","journal-title":"Nat. Rev. Clin. Oncol."},{"key":"10.1016\/j.cmpb.2023.107724_bib0003","doi-asserted-by":"crossref","first-page":"1074","DOI":"10.1111\/jgh.14547","article-title":"Clinical and pathological features of combined hepatocellular-cholangiocarcinoma compared with other liver cancers","volume":"34","author":"Wakizaka","year":"2019","journal-title":"J. Gastroenterol. Hepatol."},{"issue":"10","key":"10.1016\/j.cmpb.2023.107724_bib0004","doi-asserted-by":"crossref","DOI":"10.1117\/1.JBO.18.10.100901","article-title":"Review of Spectral Imaging Technology in Biomedical Engineering: achievements and Challenges","volume":"18","author":"Li","year":"2013","journal-title":"J. Biomed. Opt"},{"issue":"9","key":"10.1016\/j.cmpb.2023.107724_bib0005","doi-asserted-by":"crossref","first-page":"1845","DOI":"10.1109\/TMI.2017.2695523","article-title":"Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging","volume":"36","author":"Rav\u00ec","year":"2017","journal-title":"IEEE. Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2023.107724_bib0006","series-title":"Proceedings of the IEEE Conference on Information and Communication Technology","first-page":"1","article-title":"ResNet convolution neural network based hyperspectral imagery classification for accurate cancerous region detection","author":"Jeyaraj","year":"2019"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107724_bib0007","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1109\/TMI.2020.3024923","article-title":"Identification of melanoma from hyperspectral pathology image using 3D convolutional networks","volume":"40","author":"Wang","year":"2021","journal-title":"IEEE. Trans. Med. Imaging"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107724_bib0008","doi-asserted-by":"crossref","first-page":"1330","DOI":"10.1109\/TBME.2020.3026683","article-title":"Tongue tumor detection in hyperspectral images using deep learning semantic segmentation","volume":"68","author":"Trajanovski","year":"2021","journal-title":"IEEE. Trans. Biomed. Eng"},{"key":"10.1016\/j.cmpb.2023.107724_bib0009","series-title":"Proceedings of the 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","first-page":"1","article-title":"Swin-spectral transformer for cholangiocarcinoma hyperspectral image segmentation","author":"Zhou","year":"2021"},{"key":"10.1016\/j.cmpb.2023.107724_bib0010","doi-asserted-by":"crossref","first-page":"5794","DOI":"10.1364\/BOE.472106","article-title":"MC-GAT: multi-layer collaborative generative adversarial transformer for cholangiocarcinoma classification from hyperspectral pathological images","volume":"13","author":"Li","year":"2022","journal-title":"Biomed. Opt. Express"},{"key":"10.1016\/j.cmpb.2023.107724_bib0011","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.ymeth.2021.04.005","article-title":"Diagnosis of cholangiocarcinoma from microscopic hyperspectral pathological dataset by deep convolution neural networks","volume":"202","author":"Sun","year":"2022","journal-title":"Methods"},{"key":"10.1016\/j.cmpb.2023.107724_bib0012","doi-asserted-by":"crossref","DOI":"10.3390\/s22249790","article-title":"Deep learning in medical hyperspectral images: a review","author":"Cui","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2023.107724_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.optlastec.2023.109331","article-title":"Automatic generation of pathological benchmark dataset from hyperspectral images of double stained tissues","volume":"163","author":"Wang","year":"2023","journal-title":"Opt. Laser. Technol"},{"key":"10.1016\/j.cmpb.2023.107724_bib0014","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1109\/LSP.2023.3273506","article-title":"Masked spectral bands modeling with shifted windows: an excellent self-supervised learner for classification of medical hyperspectral images","volume":"30","author":"Li","year":"2023","journal-title":"IEEE. Signal. Process. Lett."},{"issue":"10","key":"10.1016\/j.cmpb.2023.107724_bib0015","doi-asserted-by":"crossref","first-page":"1497","DOI":"10.1109\/LGRS.2016.2593789","article-title":"Dimensionality reduction based on group-based tensor model for hyperspectral image classification","volume":"13","author":"An","year":"2016","journal-title":"IEEE. Geosci. Remote. Sens. Lett"},{"journal-title":"J. Beijing. Inst. Technol","article-title":"Graph-based dimensionality reduction for hyperspectral imagery: a review","year":"2021","author":"Ye","key":"10.1016\/j.cmpb.2023.107724_bib0016"},{"issue":"5500","key":"10.1016\/j.cmpb.2023.107724_bib0017","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1126\/science.290.5500.2319","article-title":"A global geometric framework for nonlinear dimensionality reduction","volume":"290","author":"Tenenbaum","year":"2000","journal-title":"Science"},{"issue":"9","key":"10.1016\/j.cmpb.2023.107724_bib0018","doi-asserted-by":"crossref","first-page":"1616","DOI":"10.1109\/TKDE.2018.2807452","article-title":"A comprehensive survey of graph embedding: problems, techniques, and applications","volume":"30","author":"Cai","year":"2018","journal-title":"IEEE. Trans. Knowl. Data. Eng"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107724_bib0019","doi-asserted-by":"crossref","first-page":"29","DOI":"10.3390\/rs11010029","article-title":"Laplacian regularized spatial-aware collaborative graph for discriminant analysis of hyperspectral imagery","volume":"11","author":"Jiang","year":"2019","journal-title":"Remote. Sens"},{"key":"10.1016\/j.cmpb.2023.107724_bib0020","series-title":"Proceedings of the International Conference on Geoinformatics","first-page":"1","article-title":"Locality perserving projections algorithm for hyperspectral image dimensionality reduction","author":"Wang","year":"2011"},{"article-title":"A supervised neighborhood preserving embedding for face recognition","year":"2014","series-title":"Proceedings of the International Joint Conference on Neural Networks (IJCNN)","author":"Bao","key":"10.1016\/j.cmpb.2023.107724_bib0021"},{"key":"10.1016\/j.cmpb.2023.107724_bib0022","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.patcog.2014.07.009","article-title":"A collaborative representation based projections method for feature extraction","volume":"48","author":"Yang","year":"2015","journal-title":"Pattern. Recognit"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107724_bib0023","doi-asserted-by":"crossref","first-page":"1030","DOI":"10.1109\/TGRS.2013.2246837","article-title":"Sparse Transfer Manifold Embedding for Hyperspectral Target Detection","volume":"52","author":"Zhang","year":"2014","journal-title":"IEEE. Trans. Geosci. Remote. Sens"},{"issue":"8","key":"10.1016\/j.cmpb.2023.107724_bib0024","doi-asserted-by":"crossref","first-page":"1900","DOI":"10.1109\/TCYB.2015.2457611","article-title":"Low-Rank Preserving Projections","volume":"46","author":"Lu","year":"2016","journal-title":"IEEE. Trans. Cybern"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107724_bib0025","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1109\/TCYB.2019.2910151","article-title":"Nonlocal Low-Rank Tensor Completion for Visual Data","volume":"51","author":"Zhang","year":"2021","journal-title":"IEEE. Trans. Cybern"},{"key":"10.1016\/j.cmpb.2023.107724_bib0026","doi-asserted-by":"crossref","DOI":"10.1109\/LGRS.2022.3153041","article-title":"Unsupervised dimensionality reduction for hyperspectral imagery via laplacian regularized collaborative representation projection","volume":"19","author":"Jiang","year":"2022","journal-title":"IEEE. Geosci. Remote. Sens. Lett"},{"key":"10.1016\/j.cmpb.2023.107724_bib0027","doi-asserted-by":"crossref","first-page":"4684","DOI":"10.1109\/JSTARS.2021.3077460","article-title":"Superpixelwise collaborative-representation graph embedding for unsupervised dimension reduction in hyperspectral imagery","volume":"14","author":"Liu","year":"2021","journal-title":"IEEE. J. Select. Topics. Appl. Earth. Observ. Remote. Sens"},{"issue":"5","key":"10.1016\/j.cmpb.2023.107724_bib0028","doi-asserted-by":"crossref","DOI":"10.3390\/rs9050452","article-title":"Hyperspectral dimensionality reduction by tensor sparse and low-rank graph-based discriminant analysis","volume":"9","author":"Pan","year":"2017","journal-title":"Remote. Sens."},{"key":"10.1016\/j.cmpb.2023.107724_bib0029","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.ins.2017.02.044","article-title":"Hyperspectral image denoising with superpixel segmentation and low-rank representation","volume":"397","author":"Fan","year":"2017","journal-title":"Inf. Sci."},{"journal-title":"SIViP","article-title":"Research on dimensionality reduction in unconstrained face image based on weighted block tensor sparse graph embedding","year":"2022","author":"Liu","key":"10.1016\/j.cmpb.2023.107724_bib0030"},{"key":"10.1016\/j.cmpb.2023.107724_bib0031","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1049\/ell2.12109","article-title":"Spatial-spectral feature extraction of hyperspectral images using tensor-based collaborative graph analysis","volume":"57","author":"Pan","year":"2021","journal-title":"Electron. Lett."},{"key":"10.1016\/j.cmpb.2023.107724_bib0032","series-title":"Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)","first-page":"1","article-title":"Tensor locality preserving projection for hyperspectral image classification","author":"Deng","year":"2017"},{"issue":"12","key":"10.1016\/j.cmpb.2023.107724_bib0033","doi-asserted-by":"crossref","first-page":"7122","DOI":"10.1109\/TGRS.2016.2596260","article-title":"Set-to-set distance-based spectral-spatial classification of hyperspectral images","volume":"54","author":"Lu","year":"2016","journal-title":"IEEE. Trans. Geosci. Remote. Sens."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107724_bib0034","doi-asserted-by":"crossref","first-page":"4581","DOI":"10.1109\/TGRS.2018.2828029","article-title":"SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery","volume":"56","author":"Jiang","year":"2018","journal-title":"IEEE. Trans. Geosci. Remote. Sens."},{"key":"10.1016\/j.cmpb.2023.107724_bib43","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.ins.2017.02.044","article-title":"Hyperspectral image denoising with superpixel segmentation and low-rank representation","volume":"397","author":"Fan","year":"2017","journal-title":"Inf. Sci."},{"key":"10.1016\/j.cmpb.2023.107724_bib0035","doi-asserted-by":"crossref","first-page":"149414","DOI":"10.1109\/ACCESS.2019.2947470","article-title":"A multidimensional choledoch database and benchmarks for cholangiocarcinoma diagnosis","volume":"7","author":"Zhang","year":"2019","journal-title":"IEEE. Access"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107724_bib0036","doi-asserted-by":"crossref","first-page":"1082","DOI":"10.1109\/TGRS.2014.2333539","article-title":"Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification","volume":"53","author":"Zhou","year":"2015","journal-title":"IEEE. Trans. Geosci. Remote. Sens."},{"issue":"11","key":"10.1016\/j.cmpb.2023.107724_bib0037","doi-asserted-by":"crossref","first-page":"2274","DOI":"10.1109\/TPAMI.2012.120","article-title":"SLIC superpixels compared to state-of-the-art superpixel methods","volume":"34","author":"Achanta","year":"2012","journal-title":"IEEE. Trans. Pattern. Anal. Mach. Intell."},{"key":"10.1016\/j.cmpb.2023.107724_bib0038","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.neucom.2019.06.023","article-title":"Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification","volume":"360","author":"Xu","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cmpb.2023.107724_bib0039","series-title":"Proceedings of the International Conference on Image Analysis and Processing 2015","first-page":"364","article-title":"Fast superpixel-based hierarchical approach to image segmentation","author":"Verdoja","year":"2015"},{"journal-title":"Adv. Neural. Inf. Process. Syst","article-title":"A new metric on the manifold of kernel matrices with application to matrix geometric mean","year":"2012","author":"Sra","key":"10.1016\/j.cmpb.2023.107724_bib0040"},{"year":"2006","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","key":"10.1016\/j.cmpb.2023.107724_bib0041"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723003905?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723003905?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T00:59:34Z","timestamp":1722387574000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260723003905"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":42,"alternative-id":["S0169260723003905"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.cmpb.2023.107724","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unsupervised dimensionality reduction of medical hyperspectral imagery in tensor space","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107724","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107724"}}