{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T01:10:14Z","timestamp":1720660214644},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62001470"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2022YFC3601003"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.bspc.2024.106070","type":"journal-article","created":{"date-parts":[[2024,2,16]],"date-time":"2024-02-16T15:33:52Z","timestamp":1708097632000},"page":"106070","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Prediction of arterial blood pressure waveforms based on Multi-Task learning"],"prefix":"10.1016","volume":"92","author":[{"given":"Gang","family":"Ma","sequence":"first","affiliation":[]},{"given":"Lesong","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Wenliang","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Xiaoman","family":"Xing","sequence":"additional","affiliation":[]},{"given":"Lirong","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5653-6045","authenticated-orcid":false,"given":"Yong","family":"Yu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2024.106070_b0005","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1161\/HYPERTENSIONAHA.120.14591","article-title":"Ambulatory blood pressure monitoring to diagnose and manage hypertension","volume":"77","author":"Huang","year":"2021","journal-title":"Hypertension"},{"issue":"2018","key":"10.1016\/j.bspc.2024.106070_b0010","first-page":"e13","volume":"71","author":"Whelton","year":"2017","journal-title":"Hypertension"},{"key":"10.1016\/j.bspc.2024.106070_b0015","doi-asserted-by":"crossref","first-page":"14","DOI":"10.5830\/CVJA-2016-045","article-title":"Non-dipper hypertension is associated with slow coronary flow among hypertensives with normal coronary angiogram","volume":"28","author":"Aksit","year":"2017","journal-title":"Cardiovasc. J. Africa"},{"key":"10.1016\/j.bspc.2024.106070_b0020","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1093\/ajh\/hpy138","article-title":"The effects of ambulatory blood pressure monitoring on sleep quality in men and women with hypertension: dipper vs nondipper and race differences","volume":"32","author":"Sherwood","year":"2019","journal-title":"Am. J. Hypertens."},{"key":"10.1016\/j.bspc.2024.106070_b0025","doi-asserted-by":"crossref","DOI":"10.1186\/s40885-021-00180-4","article-title":"Clinical risk factors and predictive score for the non-dipper profile in hypertensive patients: a case-control study","volume":"27","author":"Chotruangnapa","year":"2021","journal-title":"Clinical Hypertension"},{"key":"10.1016\/j.bspc.2024.106070_b0030","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1161\/HYPERTENSIONAHA.109.133900","article-title":"Predictive Role of the Nighttime Blood Pressure","volume":"57","author":"Hansen","year":"2011","journal-title":"Hypertension"},{"key":"10.1016\/j.bspc.2024.106070_b0035","doi-asserted-by":"crossref","DOI":"10.3390\/technologies5020021","article-title":"Cuff-Less and Continuous Blood Pressure Monitoring: A Methodological Review","volume":"5","author":"Sharma","year":"2017","journal-title":"Technologies"},{"key":"10.1016\/j.bspc.2024.106070_b0040","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/j.ccl.2010.07.006","article-title":"Principles and techniques of blood pressure measurement","volume":"28","author":"Ogedegbe","year":"2010","journal-title":"Cardiol Clin"},{"key":"10.1016\/j.bspc.2024.106070_b0045","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/TBME.2021.3087105","article-title":"Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans","volume":"69","author":"Natarajan","year":"2022","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2024.106070_b0050","doi-asserted-by":"crossref","first-page":"102972","DOI":"10.1016\/j.bspc.2021.102972","article-title":"Deep generative model with domain adversarial training for predicting arterial blood pressure waveform from photoplethysmogram signal","volume":"70","author":"Qin","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0055","doi-asserted-by":"crossref","first-page":"102984","DOI":"10.1016\/j.bspc.2021.102984","article-title":"Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models","volume":"70","author":"El-Hajj","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0060","doi-asserted-by":"crossref","first-page":"103850","DOI":"10.1016\/j.bspc.2022.103850","article-title":"BP-Net: Cuff-less and non-invasive blood pressure estimation via a generic deep convolutional architecture","volume":"78","author":"Zabihi","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0065","doi-asserted-by":"crossref","first-page":"103581","DOI":"10.1016\/j.bspc.2022.103581","article-title":"Attention-based residual improved U-Net model for continuous blood pressure monitoring by using photoplethysmography signal","volume":"75","author":"Yu","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0070","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.artmed.2018.12.005","article-title":"A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals","volume":"97","author":"Sharifi","year":"2019","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.bspc.2024.106070_b0075","doi-asserted-by":"crossref","DOI":"10.3390\/s21010096","article-title":"Beat-to-Beat Continuous Blood Pressure Estimation Using Bidirectional Long Short-Term Memory Network","volume":"21","author":"Lee","year":"2020","journal-title":"Sensors (basel)"},{"key":"10.1016\/j.bspc.2024.106070_b0080","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1088\/0967-3334\/30\/7\/011","article-title":"Non-constrained monitoring of systolic blood pressure on a weighing scale","volume":"30","author":"Shin","year":"2009","journal-title":"Physiol Meas"},{"key":"10.1016\/j.bspc.2024.106070_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119058","article-title":"A support system for automatic classification of hypertension using BCG signals","volume":"214","author":"Gupta","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2024.106070_b0090","first-page":"1","article-title":"Automated Hilbert Envelope Based Respiration Rate Measurement from PPG Signal for Wearable Vital Signs Monitoring Devices","author":"Reddy","year":"2022","journal-title":"IEEE"},{"key":"10.1016\/j.bspc.2024.106070_b0095","first-page":"1","article-title":"Application of TQWT based filter-bank for sleep apnea screening using ECG signals","author":"Nishad","year":"2018","journal-title":"J. Ambient Intell. Hum. Comput."},{"key":"10.1016\/j.bspc.2024.106070_b0100","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1016\/j.bbe.2018.04.004","article-title":"Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform","volume":"38","author":"Kumar","year":"2018","journal-title":"Biocybern. Biomed. Eng."},{"key":"10.1016\/j.bspc.2024.106070_b0105","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.compeleceng.2019.01.025","article-title":"Accurate tunable-Q wavelet transform based method for QRS complex detection","volume":"75","author":"Sharma","year":"2019","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.bspc.2024.106070_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103630","article-title":"A computational intelligence tool for the detection of hypertension using empirical mode decomposition","volume":"118","author":"Soh","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2024.106070_b0115","series-title":"Time-frequency analysis techniques and their applications","author":"Pachori","year":"2023"},{"key":"10.1016\/j.bspc.2024.106070_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3123218","article-title":"Photoplethysmography-Based Blood Pressure Estimation Combining Filter-Wrapper Collaborated Feature Selection With LASSO-LSTM Model","volume":"70","author":"Wang","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.bspc.2024.106070_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106222","article-title":"Classification of blood pressure in critically ill patients using photoplethysmography and machine learning","volume":"208","author":"Mejia-Mejia","year":"2021","journal-title":"Comput Methods Programs Biomed"},{"key":"10.1016\/j.bspc.2024.106070_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105536","article-title":"Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression Xgboost, LASSO Regression and Ensemble Method","volume":"195","author":"Huang","year":"2020","journal-title":"Comput. Methods Programs Biomed"},{"key":"10.1016\/j.bspc.2024.106070_b0135","doi-asserted-by":"crossref","first-page":"34112","DOI":"10.1109\/ACCESS.2021.3062033","article-title":"Machine Learning Method for Continuous Noninvasive Blood Pressure Detection Based on Random Forest","volume":"9","author":"Chen","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2024.106070_b0140","series-title":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","first-page":"2707","article-title":"Continuous blood pressure estimation from two-channel PPG parameters by XGBoost","author":"Che","year":"2019"},{"key":"10.1016\/j.bspc.2024.106070_b0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103891","article-title":"PPG-based blood pressure estimation can benefit from scalable multi-scale fusion neural networks and multi-task learning","volume":"78","author":"Hu","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0150","doi-asserted-by":"crossref","DOI":"10.1155\/2014\/637635","article-title":"Predicting increased blood pressure using machine learning","volume":"2014","author":"Golino","year":"2014","journal-title":"J Obes"},{"key":"10.1016\/j.bspc.2024.106070_b0155","first-page":"1","article-title":"Automatic Classification of Hypertension Types Based on Personal Features by Machine Learning Algorithms","volume":"2020","author":"Nour","year":"2020","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.bspc.2024.106070_b0160","doi-asserted-by":"crossref","first-page":"101","DOI":"10.3390\/bios8040101","article-title":"Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification","volume":"8","author":"Liang","year":"2018","journal-title":"Biosensors (basel)"},{"key":"10.1016\/j.bspc.2024.106070_b0165","doi-asserted-by":"crossref","first-page":"20735","DOI":"10.1109\/ACCESS.2020.2968967","article-title":"Noninvasive Classification of Blood Pressure Based on Photoplethysmography Signals Using Bidirectional Long Short-Term Memory and Time-Frequency Analysis","volume":"8","author":"Tjahjadi","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2024.106070_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.101942","article-title":"Investigation on the effect of Womersley number, ECG and PPG features for cuff less blood pressure estimation using machine learning","volume":"60","author":"Thambiraj","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0175","doi-asserted-by":"crossref","first-page":"103001","DOI":"10.1016\/j.bspc.2021.103001","article-title":"Cuffless blood pressure estimation based on composite neural network and graphics information","volume":"70","author":"Qiu","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0180","doi-asserted-by":"crossref","first-page":"103404","DOI":"10.1016\/j.bspc.2021.103404","article-title":"MLP-BP: A novel framework for cuffless blood pressure measurement with PPG and ECG signals based on MLP-Mixer neural networks","volume":"73","author":"Huang","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0185","first-page":"1","article-title":"Novel wavelet neural network algorithm for continuous and noninvasive dynamic estimation of blood pressure from photoplethysmography","volume":"59","author":"Li","year":"2015","journal-title":"Sci. China Inf. Sci."},{"key":"10.1016\/j.bspc.2024.106070_b0190","doi-asserted-by":"crossref","first-page":"2952","DOI":"10.3390\/s21092952","article-title":"Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation","volume":"21","author":"Harfiya","year":"2021","journal-title":"Sensors (basel)"},{"key":"10.1016\/j.bspc.2024.106070_b0195","doi-asserted-by":"crossref","first-page":"104877","DOI":"10.1016\/j.compbiomed.2021.104877","article-title":"Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks","volume":"138","author":"Cheng","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2024.106070_b0200","doi-asserted-by":"crossref","first-page":"104247","DOI":"10.1016\/j.bspc.2022.104247","article-title":"NABNet: A Nested Attention-guided BiConvLSTM network for a robust prediction of Blood Pressure components from reconstructed Arterial Blood Pressure waveforms using PPG and ECG signals","volume":"79","author":"Mahmud","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0205","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.2215\/CJN.03680320","article-title":"Cuffless Blood Pressure Monitoring: Promises and Challenges","volume":"15","author":"Pandit","year":"2020","journal-title":"Clin. J. Am. Soc. Nephrol."},{"key":"10.1016\/j.bspc.2024.106070_b0210","unstructured":"L. Zhang, N.C. Hurley, B. Ibrahim, et al., Developing Personalized Models of Blood Pressure Estimation from Wearable Sensors Data Using Minimally-trained Domain Adversarial Neural Networks, in: L. Zhang, N.C. Hurley, B. Ibrahim, E. Spatz, H.M. Krumholz, R. Jafari, M.J. Bobak (Eds.) Proceedings of the 5th Machine Learning for Healthcare Conference, PMLR, Proceedings of Machine Learning Research, 2020, pp. 97--120."},{"key":"10.1016\/j.bspc.2024.106070_b0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.101870","article-title":"A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure","volume":"58","author":"El-Hajj","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0220","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1109\/TBME.2016.2580904","article-title":"Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring","volume":"64","author":"Kachuee","year":"2017","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2024.106070_b0225","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1097\/CCM.0b013e31820a92c6","article-title":"Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database","volume":"39","author":"Saeed","year":"2011","journal-title":"Crit. Care Med."},{"key":"10.1016\/j.bspc.2024.106070_b0230","doi-asserted-by":"crossref","first-page":"2118","DOI":"10.1109\/TMI.2021.3072956","article-title":"HF-UNet: Learning Hierarchically Inter-Task Relevance in Multi-Task U-Net for Accurate Prostate Segmentation in CT Images","volume":"40","author":"He","year":"2021","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.bspc.2024.106070_b0235","article-title":"MIMIC-III Clinical Database (version 1.4)","author":"Johnson","year":"2016","journal-title":"PhysioNet"},{"key":"10.1016\/j.bspc.2024.106070_b0240","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.bspc.2024.106070_b0245","first-page":"2096","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Res."},{"key":"10.1016\/j.bspc.2024.106070_b0250","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.neucom.2018.05.083","article-title":"Deep visual domain adaptation: A survey","volume":"312","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.bspc.2024.106070_b0255","series-title":"Springer International Publishing","first-page":"234","article-title":"U-Net: Convolutional Networks for Biomedical Image Segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.bspc.2024.106070_b0260","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"3","article-title":"Cbam: Convolutional block attention module","author":"Woo","year":"2018"},{"key":"10.1016\/j.bspc.2024.106070_b0265","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2016.35","article-title":"MIMIC-III, a freely accessible critical care database","volume":"3","author":"Johnson","year":"2016","journal-title":"Sci. Data"},{"key":"10.1016\/j.bspc.2024.106070_b0270","doi-asserted-by":"crossref","first-page":"116788","DOI":"10.1016\/j.eswa.2022.116788","article-title":"A survey: From shallow to deep machine learning approaches for blood pressure estimation using biosensors","volume":"197","author":"Maqsood","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2024.106070_b0275","doi-asserted-by":"crossref","first-page":"76585","DOI":"10.1371\/journal.pone.0076585","article-title":"Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions","volume":"8","author":"Elgendi","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.bspc.2024.106070_b0280","doi-asserted-by":"crossref","first-page":"103035","DOI":"10.1016\/j.bspc.2021.103035","article-title":"NB-SQI: A novel non-binary signal quality index for continuous blood pressure waveforms","volume":"70","author":"Ign\u00e1cz","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106070_b0285","series-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","article-title":"Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification","author":"Wang","year":"2018"},{"key":"10.1016\/j.bspc.2024.106070_b0290","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.inffus.2019.12.008","article-title":"Multi-level information fusion for learning a blood pressure predictive model using sensor data","volume":"58","author":"Simjanoska","year":"2020","journal-title":"Inform. Fus."},{"key":"10.1016\/j.bspc.2024.106070_b0295","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1097\/00004872-199007000-00004","article-title":"The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems","volume":"8","author":"O'Brien","year":"1990","journal-title":"J. Hypertens."},{"key":"10.1016\/j.bspc.2024.106070_b0300","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1161\/HYPERTENSIONAHA.117.10237","article-title":"A Universal Standard for the Validation of Blood Pressure Measuring Devices","volume":"71","author":"Stergiou","year":"2018","journal-title":"Hypertension"},{"key":"10.1016\/j.bspc.2024.106070_b0305","doi-asserted-by":"crossref","first-page":"3420","DOI":"10.3390\/s19153420","article-title":"Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network","volume":"19","author":"Slapnicar","year":"2019","journal-title":"Sensors (basel)"},{"key":"10.1016\/j.bspc.2024.106070_b0310","doi-asserted-by":"crossref","first-page":"055004","DOI":"10.1088\/1361-6579\/abf889","article-title":"Study of cuffless blood pressure estimation method based on multiple physiological parameters","volume":"42","author":"Zhang","year":"2021","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.bspc.2024.106070_b0315","unstructured":"N. Ibtehaz, S. Mahmud, M.E. Chowdhury, et al., Ppg2abp: Translating photoplethysmogram (ppg) signals to arterial blood pressure (abp) waveforms using fully convolutional neural networks, arXiv preprint arXiv:2005.01669, (2020)."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424001289?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424001289?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,21]],"date-time":"2024-05-21T07:38:31Z","timestamp":1716277111000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809424001289"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":63,"alternative-id":["S1746809424001289"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.bspc.2024.106070","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Prediction of arterial blood pressure waveforms based on Multi-Task learning","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2024.106070","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106070"}}