{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:54:50Z","timestamp":1732042490332},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.bspc.2023.104685","type":"journal-article","created":{"date-parts":[[2023,2,22]],"date-time":"2023-02-22T23:45:24Z","timestamp":1677109524000},"page":"104685","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Quantitative evaluation of myometrial infiltration depth ratio for early endometrial cancer based on deep learning"],"prefix":"10.1016","volume":"84","author":[{"given":"Wei","family":"Mao","sequence":"first","affiliation":[]},{"given":"Chunxia","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Huachao","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Liu","family":"Xiong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3564-7184","authenticated-orcid":false,"given":"Yongping","family":"Lin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2023.104685_b1","article-title":"Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","author":"Sung","year":"2021","journal-title":"CA: Cancer J. Clin."},{"key":"10.1016\/j.bspc.2023.104685_b2","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1002\/ijgo.12612","article-title":"Cancer of the corpus uteri","volume":"143","author":"Amant","year":"2018","journal-title":"Int. J. Gynecol. Obstet."},{"issue":"6","key":"10.1016\/j.bspc.2023.104685_b3","first-page":"394","article-title":"Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"Bray","year":"2018","journal-title":"CA: Cancer J. Clin."},{"issue":"4","key":"10.1016\/j.bspc.2023.104685_b4","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1093\/jnci\/djx214","article-title":"International patterns and trends in endometrial cancer incidence, 1978\u20132013","volume":"110","author":"Lortet-Tieulent","year":"2018","journal-title":"JNCI: J. Natl. Cancer. Inst."},{"issue":"1","key":"10.1016\/j.bspc.2023.104685_b5","first-page":"7","article-title":"Cancer statistics, 2021","volume":"71","author":"Siegel","year":"2021","journal-title":"CA: Cancer J. Clin."},{"issue":"1","key":"10.1016\/j.bspc.2023.104685_b6","first-page":"7","article-title":"Cancer statistics, 2020","volume":"70","author":"Siegel","year":"2020","journal-title":"CA: Cancer J. Clin."},{"issue":"2","key":"10.1016\/j.bspc.2023.104685_b7","first-page":"115","article-title":"Cancer statistics in China, 2015","volume":"66","author":"Chen","year":"2016","journal-title":"CA: Cancer J. Clin."},{"issue":"2","key":"10.1016\/j.bspc.2023.104685_b8","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.ijgo.2009.02.012","article-title":"Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium","volume":"105","author":"Pecorelli","year":"2009","journal-title":"Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet."},{"issue":"10023","key":"10.1016\/j.bspc.2023.104685_b9","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1016\/S0140-6736(15)00130-0","article-title":"Endometrial cancer","volume":"387","author":"Morice","year":"2016","journal-title":"Lancet"},{"key":"10.1016\/j.bspc.2023.104685_b10","series-title":"Cancer Council","article-title":"Understanding cancer of the uterus","author":"Cancer Council Australia","year":"2017"},{"issue":"2","key":"10.1016\/j.bspc.2023.104685_b11","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.jmig.2017.07.022","article-title":"Updates on conservative management of endometrial cancer","volume":"25","author":"Corzo","year":"2018","journal-title":"J. Minim. Invasive Gynecol."},{"issue":"5","key":"10.1016\/j.bspc.2023.104685_b12","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1067\/j.cpradiol.2017.08.003","article-title":"Surveillance imaging in patients with endometrial cancer in first remission","volume":"47","author":"Alabed","year":"2018","journal-title":"Curr. Probl. Diagn. Radiol."},{"key":"10.1016\/j.bspc.2023.104685_b13","article-title":"The role of endometrial sampling for surveillance of recurrence in postmenopausal patients with medically inoperable stage I endometrial cancer","volume":"35","author":"Carey-Love","year":"2021","journal-title":"Gynecol. Oncol. Rep."},{"issue":"3","key":"10.1016\/j.bspc.2023.104685_b14","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1016\/j.ygyno.2017.06.024","article-title":"Endometrial cancer surveillance adherence reduces utilization and subsequent costs","volume":"146","author":"Schwartz","year":"2017","journal-title":"Gynecol. Oncol."},{"issue":"2","key":"10.1016\/j.bspc.2023.104685_b15","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1148\/radiol.2312021184","article-title":"Local-regional staging of endometrial carcinoma: Role of MR imaging in surgical planning","volume":"231","author":"Manfredi","year":"2004","journal-title":"Radiology"},{"issue":"4","key":"10.1016\/j.bspc.2023.104685_b16","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/s11912-016-0506-0","article-title":"What is the best preoperative imaging for endometrial cancer?","volume":"18","author":"Haldorsen","year":"2016","journal-title":"Curr. Oncol. Rep."},{"issue":"1","key":"10.1016\/j.bspc.2023.104685_b17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40644-016-0069-1","article-title":"MRI of endometrium cancer - How we do it","volume":"16","author":"Meissnitzer","year":"2016","journal-title":"Cancer Imaging"},{"key":"10.1016\/j.bspc.2023.104685_b18","doi-asserted-by":"crossref","DOI":"10.1038\/s41391-021-00373-w","article-title":"Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models","author":"Stavrinides","year":"2021","journal-title":"Prostate Cancer and Prostatic Dis."},{"key":"10.1016\/j.bspc.2023.104685_b19","first-page":"16","article-title":"Prophylactic cranial irradiation for extensive-stage small cell lung cancer: Analysis based on active brain MRI surveillance","volume":"25","author":"Yu","year":"2020","journal-title":"Clin. Transl. Radiat. Oncol."},{"issue":"3","key":"10.1016\/j.bspc.2023.104685_b20","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.crad.2019.09.145","article-title":"Comparison of the utility of clinical breast examination and MRI in the surveillance of women with a high risk of breast cancer","volume":"75","author":"Mihalco","year":"2020","journal-title":"Clin. Radiol."},{"issue":"2","key":"10.1016\/j.bspc.2023.104685_b21","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.ejso.2018.08.032","article-title":"MRI surveillance for local recurrence in extremity soft tissue sarcoma","volume":"45","author":"Park","year":"2019","journal-title":"Eur. J. Surg. Oncol."},{"issue":"4","key":"10.1016\/j.bspc.2023.104685_b22","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1053\/j.sult.2019.04.001","article-title":"Imaging and staging of endometrial cancer","volume":"40","author":"Faria","year":"2019","journal-title":"Semin. Ultrasound CT MRI"},{"issue":"5","key":"10.1016\/j.bspc.2023.104685_b23","doi-asserted-by":"crossref","first-page":"e218","DOI":"10.1002\/mp.13764","article-title":"Computer-aided diagnosis in the era of deep learning","volume":"47","author":"Chan","year":"2020","journal-title":"Med. Phys."},{"issue":"3","key":"10.1016\/j.bspc.2023.104685_b24","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1080\/10867651.2001.10487544","article-title":"Contour extraction of compressed JPEG images","volume":"6","author":"Wiseman","year":"2001","journal-title":"J. Graph. Tools"},{"key":"10.1016\/j.bspc.2023.104685_b25","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1016\/j.inffus.2022.10.022","article-title":"Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI","volume":"91","author":"Zhu","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.bspc.2023.104685_b26","series-title":"Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation","author":"Alom","year":"2018"},{"key":"10.1016\/j.bspc.2023.104685_b27","series-title":"2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"993","article-title":"Deep learning-based automatic endometrium segmentation and thickness measurement for 2D transvaginal ultrasound","author":"Hu","year":"2019"},{"issue":"August","key":"10.1016\/j.bspc.2023.104685_b28","article-title":"Automatic segmentation of the uterus on MRI using a convolutional neural network","volume":"114","author":"Kurata","year":"2019","journal-title":"Comput. Biol. Med."},{"issue":"7787","key":"10.1016\/j.bspc.2023.104685_b29","doi-asserted-by":"crossref","first-page":"S54","DOI":"10.1038\/d41586-019-03847-z","article-title":"Rise of robot radiologists","volume":"576","author":"Reardon","year":"2019","journal-title":"Nature"},{"issue":"5","key":"10.1016\/j.bspc.2023.104685_b30","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1016\/j.acra.2020.02.028","article-title":"Deep myometrial infiltration of endometrial cancer on MRI: A radiomics-powered machine learning pilot study","volume":"28","author":"Stanzione","year":"2021","journal-title":"Academic Radiol."},{"issue":"16","key":"10.1016\/j.bspc.2023.104685_b31","doi-asserted-by":"crossref","first-page":"5993","DOI":"10.3390\/ijerph17165993","article-title":"Using deep learning with convolutional neural network approach to identify the invasion depth of endometrial cancer in myometrium using MR images: A pilot study","volume":"17","author":"Dong","year":"2020","journal-title":"Int. J. Environ. Res. Public Health"},{"issue":"9","key":"10.1016\/j.bspc.2023.104685_b32","doi-asserted-by":"crossref","first-page":"4985","DOI":"10.1007\/s00330-020-06870-1","article-title":"Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: a preliminary study in a single institution","volume":"30","author":"Chen","year":"2020","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.bspc.2023.104685_b33","doi-asserted-by":"crossref","DOI":"10.3389\/fphys.2022.974245","article-title":"A deep learning-based automatic staging method for early endometrial cancer on MRI images","volume":"13","author":"Mao","year":"2022","journal-title":"Front. Physiol."},{"issue":"3","key":"10.1016\/j.bspc.2023.104685_b34","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1145\/357994.358023","article-title":"A fast parallel algorithm for thinning digital patterns","volume":"27","author":"Zhang","year":"1984","journal-title":"Commun. ACM"},{"issue":"5","key":"10.1016\/j.bspc.2023.104685_b35","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1109\/34.765658","article-title":"Direct least square fitting of ellipses","volume":"21","author":"Fitzgibbon","year":"1999","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.bspc.2023.104685_b36","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning","volume":"35","author":"Shin","year":"2016","journal-title":"IEEE Trans. Med. Imaging"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423001180?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423001180?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T23:11:29Z","timestamp":1716937889000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423001180"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":36,"alternative-id":["S1746809423001180"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104685","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Quantitative evaluation of myometrial infiltration depth ratio for early endometrial cancer based on deep learning","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104685","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104685"}}