iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.BSPC.2021.102456
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:21:57Z","timestamp":1727065317959},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.bspc.2021.102456","type":"journal-article","created":{"date-parts":[[2021,2,6]],"date-time":"2021-02-06T01:30:42Z","timestamp":1612575042000},"page":"102456","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Can deep learning improve the automatic segmentation of deep foveal avascular zone in optical coherence tomography angiography?"],"prefix":"10.1016","volume":"66","author":[{"given":"Menglin","family":"Guo","sequence":"first","affiliation":[]},{"given":"Mei","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6746-3902","authenticated-orcid":false,"given":"Allen MY","family":"Cheong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2661-5500","authenticated-orcid":false,"given":"Federico","family":"Corvi","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Siping","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0067-8466","authenticated-orcid":false,"given":"Yongjin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Andrew KC","family":"Lam","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.102456_bib0005","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.preteyeres.2013.01.005","article-title":"Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone","volume":"35","author":"Provis","year":"2013","journal-title":"Prog. Retin. Eye Res."},{"issue":"8","key":"10.1016\/j.bspc.2021.102456_bib0010","doi-asserted-by":"crossref","first-page":"5105","DOI":"10.1167\/iovs.10-7005","article-title":"Foveal shape and structure in a normal population","volume":"52","author":"Tick","year":"2011","journal-title":"Invest Ophth Vis Sci"},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0015","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1017\/S0952523804041057","article-title":"Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation","volume":"21","author":"Springer","year":"2004","journal-title":"Visual Neurosci"},{"issue":"6","key":"10.1016\/j.bspc.2021.102456_bib0020","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1016\/S1350-9462(01)00012-X","article-title":"Development of the primate retinal vasculature","volume":"20","author":"Provis","year":"2001","journal-title":"Prog. Retin. Eye Res."},{"key":"10.1016\/j.bspc.2021.102456_bib0025","series-title":"Ocular Vascular Occlusive Disorders","first-page":"153","article-title":"The retinal capillaries","author":"Hayreh","year":"2015"},{"issue":"7","key":"10.1016\/j.bspc.2021.102456_bib0030","doi-asserted-by":"crossref","first-page":"943","DOI":"10.1001\/archophthalmol.2011.160","article-title":"Fluorescein angiography insight and serendipity a half century ago","volume":"129","author":"Marmor","year":"2011","journal-title":"Arch Ophthalmol-Chic"},{"issue":"11","key":"10.1016\/j.bspc.2021.102456_bib0035","doi-asserted-by":"crossref","first-page":"5864","DOI":"10.1167\/iovs.10-5333","article-title":"Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail","volume":"51","author":"Mendis","year":"2010","journal-title":"Invest. Ophth Vis. Sci"},{"issue":"6","key":"10.1016\/j.bspc.2021.102456_bib0040","doi-asserted-by":"crossref","first-page":"3984","DOI":"10.1167\/iovs.15-16510","article-title":"Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography","volume":"56","author":"Kuehlewein","year":"2015","journal-title":"Invest. Ophth. Vis. Sci."},{"issue":"9","key":"10.1016\/j.bspc.2021.102456_bib0045","doi-asserted-by":"crossref","first-page":"5074","DOI":"10.1167\/iovs.15-16773","article-title":"Quantitative noninvasive angiography of the fovea centralis using speckle variance optical coherence tomography","volume":"56","author":"Mammo","year":"2015","journal-title":"Invest Ophth Vis Sci"},{"issue":"6","key":"10.1016\/j.bspc.2021.102456_bib0050","doi-asserted-by":"crossref","first-page":"3989","DOI":"10.1167\/iovs.14-15879","article-title":"Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology","volume":"56","author":"Tan","year":"2015","journal-title":"Invest. Ophth. Vis. Sci."},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0055","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1001\/jamaophthalmol.2014.3616","article-title":"Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography","volume":"133","author":"Spaide","year":"2015","journal-title":"JAMA Ophthalmol."},{"issue":"4","key":"10.1016\/j.bspc.2021.102456_bib0060","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1159\/000495624","article-title":"Implication of deep-vascular-Layer alteration detected by optical coherence tomography angiography for the pathogenesis of diabetic retinopathy","volume":"241","author":"Dimitrova","year":"2019","journal-title":"Ophthalmologica"},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0065","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1159\/000499114","article-title":"Comparison between findings in optical coherence tomography angiography and in Fluorescein Angiography in patients with diabetic retinopathy","volume":"243","author":"Enders","year":"2020","journal-title":"Ophthalmologica"},{"issue":"8","key":"10.1016\/j.bspc.2021.102456_bib0070","doi-asserted-by":"crossref","first-page":"796","DOI":"10.3928\/23258160-20150909-03","article-title":"Optical coherence tomography angiography of diabetic retinopathy in human subjects","volume":"46","author":"Matsunaga","year":"2015","journal-title":"Ophthalmic Surg. Lasers Imaging Retina"},{"issue":"2","key":"10.1016\/j.bspc.2021.102456_bib0075","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.ophtha.2016.10.008","article-title":"Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity","volume":"124","author":"Samara","year":"2017","journal-title":"Ophthalmology"},{"issue":"11","key":"10.1016\/j.bspc.2021.102456_bib0080","doi-asserted-by":"crossref","first-page":"2377","DOI":"10.1097\/IAE.0000000000000849","article-title":"Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography","volume":"35","author":"Takase","year":"2015","journal-title":"Retina"},{"issue":"6","key":"10.1016\/j.bspc.2021.102456_bib0085","doi-asserted-by":"crossref","first-page":"653","DOI":"10.3341\/jkos.2017.58.6.653","article-title":"Optical coherence tomography angiography according to severity of diabetic retinopathy","volume":"58","author":"Yoon","year":"2017","journal-title":"J. Kor. Ophthalmol. Soc."},{"key":"10.1016\/j.bspc.2021.102456_bib0090","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.ajo.2015.10.008","article-title":"Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa","volume":"161","author":"Coscas","year":"2016","journal-title":"Am. J. Ophthalmol."},{"issue":"6","key":"10.1016\/j.bspc.2021.102456_bib0095","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0217849","article-title":"Comparison of foveal avascular zone between optical coherence tomography angiography and fluorescein angiography in patients with retinal vein occlusion","volume":"14","author":"Werner","year":"2019","journal-title":"PLoS One"},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0100","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1001\/jamaophthalmol.2014.3950","article-title":"Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography","volume":"133","author":"Spaide","year":"2015","journal-title":"JAMA Ophthalmol."},{"key":"10.1016\/j.bspc.2021.102456_bib0105","article-title":"Optical coherence tomography angiography of macular telangiectasia type 2 with associated subretinal neovascular membrane","author":"Villegas","year":"2017","journal-title":"Case Rep. Ophthalmol."},{"issue":"10","key":"10.1016\/j.bspc.2021.102456_bib0110","doi-asserted-by":"crossref","first-page":"1977","DOI":"10.1007\/s00417-018-4057-y","article-title":"Superficial and deep retinal foveal avascular zone OCTA findings of non-infectious anterior and posterior uveitis","volume":"256","author":"Waizel","year":"2018","journal-title":"Graef. Arch. Clin. Exp."},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0115","first-page":"32","article-title":"Altered parafoveal microvasculature in treatment-naive choroidal melanoma eyes detected by optical coherence tomography angiography","volume":"37","author":"Li","year":"2017","journal-title":"Retina-J. Ret. Vit. Dis."},{"issue":"9","key":"10.1016\/j.bspc.2021.102456_bib0120","first-page":"1761","article-title":"Capillary Network Alterations in X-Linked Retinoschisis Imaged on Optical Coherence Tomography Angiography","volume":"39","author":"Romano","year":"2019","journal-title":"Retina-J. Ret. Vit. Dis."},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0125","doi-asserted-by":"crossref","DOI":"10.1186\/s40662-019-0173-y","article-title":"Clinically relevant factors associated with quantitative optical coherence tomography angiography metrics in deep capillary plexus in patients with diabetes","volume":"7","author":"Tang","year":"2020","journal-title":"Eye Vis."},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0130","doi-asserted-by":"crossref","first-page":"2575","DOI":"10.1038\/s41598-017-02767-0","article-title":"Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes","volume":"7","author":"Tang","year":"2017","journal-title":"Sci. Rep."},{"issue":"9","key":"10.1016\/j.bspc.2021.102456_bib0135","article-title":"Association between optic nerve head deformation and retinal microvasculature in high myopia","volume":"59","author":"Park","year":"2018","journal-title":"Invest. Ophth. Vis. Sci."},{"issue":"12","key":"10.1016\/j.bspc.2021.102456_bib0140","doi-asserted-by":"crossref","first-page":"1961","DOI":"10.1038\/s41433-019-0573-1","article-title":"Deep perifoveal vessel density as an indicator of capillary loss in high myopia","volume":"33","author":"Cheng","year":"2019","journal-title":"Eye"},{"issue":"10","key":"10.1016\/j.bspc.2021.102456_bib0145","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0223142","article-title":"Differences in macular capillary parameters between healthy black and white subjects with Optical Coherence Tomography Angiography (OCTA)","volume":"14","author":"Chun","year":"2019","journal-title":"PLoS One"},{"issue":"3","key":"10.1016\/j.bspc.2021.102456_bib0150","doi-asserted-by":"crossref","first-page":"260","DOI":"10.4103\/jovr.jovr_173_17","article-title":"Foveal avascular zone and vessel density in healthy subjects: an optical coherence tomography angiography study","volume":"13","author":"Falavarjani","year":"2018","journal-title":"J. Ophthal. Vis. Res."},{"issue":"11","key":"10.1016\/j.bspc.2021.102456_bib0155","first-page":"2102","article-title":"Variability in Foveal Avascular Zone and capillary density using optical coherence tomography angiography machines in healthy eyes","volume":"37","author":"Magrath","year":"2017","journal-title":"Retina-J. Ret. Vit. Dis."},{"issue":"4","key":"10.1016\/j.bspc.2021.102456_bib0160","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1159\/000485463","article-title":"Repeatability and reproducibility of foveal avascular zone area measurement on normal eyes by different optical coherence tomography angiography instruments","volume":"59","author":"Pilotto","year":"2018","journal-title":"Ophthalmic Res."},{"issue":"3","key":"10.1016\/j.bspc.2021.102456_bib0165","doi-asserted-by":"crossref","first-page":"763","DOI":"10.1007\/s10792-019-01238-x","article-title":"Reliability of foveal avascular zone metrics automatically measured by Cirrus optical coherence tomography angiography in healthy subjects","volume":"40","author":"Lin","year":"2020","journal-title":"Int. Ophthalmol."},{"key":"10.1016\/j.bspc.2021.102456_bib0170","article-title":"Comparison of foveal avascular zone and retinal vascular density in healthy Chinese and Caucasian adults","author":"Wylegala","year":"2019","journal-title":"Acta Ophthalmol. (Copenh)"},{"issue":"2","key":"10.1016\/j.bspc.2021.102456_bib0175","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0212364","article-title":"Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images","volume":"14","author":"Diaz","year":"2019","journal-title":"PLoS One"},{"issue":"6","key":"10.1016\/j.bspc.2021.102456_bib0180","doi-asserted-by":"crossref","first-page":"2212","DOI":"10.1167\/iovs.17-23498","article-title":"Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography","volume":"59","author":"Lu","year":"2018","journal-title":"Invest Ophth. Vis. Sci."},{"key":"10.1016\/j.bspc.2021.102456_bib0185","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.ajo.2018.05.019","article-title":"Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices REPLY","volume":"192","author":"Corvi","year":"2018","journal-title":"Am. J. Ophthalmol."},{"key":"10.1016\/j.bspc.2021.102456_bib0190","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.ajo.2016.06.008","article-title":"Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography","volume":"169","author":"Lupidi","year":"2016","journal-title":"Am. J. Ophthalmol."},{"issue":"4","key":"10.1016\/j.bspc.2021.102456_bib0195","article-title":"Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling (vol 6, 16, 2017)","volume":"6","author":"Linderman","year":"2017","journal-title":"Transl. Vis. Sci. Techn."},{"key":"10.1016\/j.bspc.2021.102456_bib0200","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.ajo.2015.09.026","article-title":"Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography","volume":"161","author":"Shahlaee","year":"2016","journal-title":"Am. J. Ophthalmol."},{"issue":"7553","key":"10.1016\/j.bspc.2021.102456_bib0205","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.bspc.2021.102456_bib0210","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1186\/s42492-019-0031-8","article-title":"Automatic quantification of superficial foveal avascular zone in optical coherence tomography angiography implemented with deep learning","volume":"2","author":"Guo","year":"2019","journal-title":"Vis. Comput. Ind. Biomed Art"},{"key":"10.1016\/j.bspc.2021.102456_bib0215","series-title":"OCTAGON (dataset)","author":"D\u00edaz","year":"2018"},{"key":"10.1016\/j.bspc.2021.102456_bib0220","article-title":"Batch normalization: accelerating deep network training by reducing internal covariate shift","volume":"1502","author":"Ioffe","year":"2015","journal-title":"arXiv preprint arXiv"},{"key":"10.1016\/j.bspc.2021.102456_bib0225","article-title":"Adam: a method for stochastic optimization","volume":"1412","author":"Kingma","year":"2014","journal-title":"arXiv preprint arXiv"},{"key":"10.1016\/j.bspc.2021.102456_bib0230","article-title":"Delving deep into rectifiers: surpassing human-level performance on imagenet classification","author":"He","year":"2015","journal-title":"Paper Presented at the Proceedings of the IEEE International Conference on Computer Vision"},{"key":"10.1016\/j.bspc.2021.102456_bib0235","series-title":"Pytorch [Computer software]","author":"Paszke","year":"2017"},{"issue":"3","key":"10.1016\/j.bspc.2021.102456_bib0240","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","article-title":"Measures of the amount of ecologic association between species","volume":"26","author":"Dice","year":"1945","journal-title":"Ecology"},{"key":"10.1016\/j.bspc.2021.102456_bib0245","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015","journal-title":"Paper Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"issue":"12","key":"10.1016\/j.bspc.2021.102456_bib0250","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: a deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2021.102456_bib0255","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015","journal-title":"Paper Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention"},{"key":"10.1016\/j.bspc.2021.102456_bib0260","article-title":"Ocnet: object context network for scene parsing","volume":"1809","author":"Yuan","year":"2018","journal-title":"arXiv preprint arXiv"},{"key":"10.1016\/j.bspc.2021.102456_bib0265","article-title":"Dfanet: deep feature aggregation for real-time semantic segmentation","author":"Li","year":"2019","journal-title":"Paper Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.bspc.2021.102456_bib0270","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016","journal-title":"Paper Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421000537?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421000537?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T00:53:08Z","timestamp":1716857588000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421000537"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":54,"alternative-id":["S1746809421000537"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.bspc.2021.102456","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Can deep learning improve the automatic segmentation of deep foveal avascular zone in optical coherence tomography angiography?","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102456","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102456"}}