iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.ASOC.2023.110829
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T21:10:02Z","timestamp":1730063402284,"version":"3.28.0"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.asoc.2023.110829","type":"journal-article","created":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T23:14:54Z","timestamp":1694301294000},"page":"110829","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Fuzzy clustering method with approximate orthogonal regularization"],"prefix":"10.1016","volume":"147","author":[{"given":"Jiaojiao","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9391-4199","authenticated-orcid":false,"given":"Andong","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Zhouwang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2023.110829_b1","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1109\/TNN.2005.845141","article-title":"Survey of clustering algorithms","volume":"16","author":"Xu","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"first-page":"25","year":"2006","series-title":"A Survey of Clustering Data Mining Techniques, Grouping Multidimensional Data","author":"Berkhin","key":"10.1016\/j.asoc.2023.110829_b2"},{"key":"10.1016\/j.asoc.2023.110829_b3","doi-asserted-by":"crossref","first-page":"3636","DOI":"10.1016\/j.asoc.2012.05.026","article-title":"Fuzzy spectral clustering with robust spatial information for image segmentation","volume":"12","author":"Liu","year":"2012","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"10.1016\/j.asoc.2023.110829_b4","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1109\/TETC.2014.2330519","article-title":"A survey of clustering algorithms for big data: Taxonomy and empirical analysis","volume":"2","author":"Fahad","year":"2014","journal-title":"IEEE Trans. Emerg. Top. Comput."},{"key":"10.1016\/j.asoc.2023.110829_b5","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1016\/j.neucom.2017.06.053","article-title":"A review of clustering techniques and developments","volume":"267","author":"Saxena","year":"2017","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.asoc.2023.110829_b6","doi-asserted-by":"crossref","DOI":"10.28991\/esj-2021-01305","article-title":"Cluster data analysis with a fuzzy equivalence relation to substantiate a medical diagnosis","volume":"5","author":"Lampezhev","year":"2021","journal-title":"Emerg. Sci. J."},{"issue":"6","key":"10.1016\/j.asoc.2023.110829_b7","article-title":"Unsupervised anomaly detection for energy consumption in time series using clustering approach","volume":"5","author":"Jesmeen","year":"2021","journal-title":"Emerg. Sci. J."},{"issue":"14","key":"10.1016\/j.asoc.2023.110829_b8","first-page":"281","article-title":"Some methods for classification and analysis of multivariate observations","volume":"1","author":"MacQueen","year":"1967","journal-title":"Proc. Fifth Berkeley Symp. Math. Stat. Probab."},{"key":"10.1016\/j.asoc.2023.110829_b9","doi-asserted-by":"crossref","first-page":"80716","DOI":"10.1109\/ACCESS.2020.2988796","article-title":"Unsupervised K-means clustering algorithm","volume":"8","author":"Sinaga","year":"2020","journal-title":"IEEE Access"},{"issue":"8","key":"10.1016\/j.asoc.2023.110829_b10","doi-asserted-by":"crossref","first-page":"1295","DOI":"10.3390\/electronics9081295","article-title":"The k-means algorithm: A comprehensive survey and performance evaluation","volume":"9","author":"Ahmed","year":"2020","journal-title":"Electronics"},{"key":"10.1016\/j.asoc.2023.110829_b11","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1109\/TPAMI.2002.1017616","article-title":"An efficient k-means clustering algorithm: Analysis and implementation","volume":"7","author":"Kanungo","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2023.110829_b12","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1016\/j.patrec.2009.09.011","article-title":"Data clustering: 50 years beyond K-means","volume":"31","author":"Jain","year":"2010","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.asoc.2023.110829_b13","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.apr.2019.09.009","article-title":"Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980\u20132019)","volume":"11","author":"Govender","year":"2020","journal-title":"Atmos. Pollut. Res."},{"key":"10.1016\/j.asoc.2023.110829_b14","first-page":"849","article-title":"On spectral clustering: analysis and an algorithm","author":"Ng","year":"2002","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.asoc.2023.110829_b15","doi-asserted-by":"crossref","first-page":"888","DOI":"10.1109\/34.868688","article-title":"Normalized cuts and image segmentation","volume":"22","author":"Shi","year":"2000","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2023.110829_b16","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.patcog.2007.05.018","article-title":"A survey of kernel and spectral methods for clustering","volume":"41","author":"Filippone","year":"2008","journal-title":"Pattern Recognit."},{"first-page":"53","year":"2012","series-title":"A Survey on Spectral Clustering, World Automation Congress (WAC)","author":"Guo","key":"10.1016\/j.asoc.2023.110829_b17"},{"key":"10.1016\/j.asoc.2023.110829_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113856","article-title":"Fuzzy C-means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development","volume":"165","author":"Askari","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2023.110829_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107590","article-title":"Construction of EBRB classifier for imbalanced data based on fuzzy C-means clustering","volume":"234","author":"Fu","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"10","key":"10.1016\/j.asoc.2023.110829_b20","doi-asserted-by":"crossref","first-page":"4310","DOI":"10.1109\/TFUZZ.2022.3148823","article-title":"Iteratively reweighted algorithm for fuzzy c-means","volume":"30","author":"Xue","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"first-page":"321","year":"2005","series-title":"Clustering Methods, Data Mining and Knowledge Discovery Handbook","author":"Rokach","key":"10.1016\/j.asoc.2023.110829_b21"},{"year":"1991","series-title":"Combinatorial Matrix Theory","author":"Brualdi","key":"10.1016\/j.asoc.2023.110829_b22"},{"key":"10.1016\/j.asoc.2023.110829_b23","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","author":"VonLuxburg","year":"2007","journal-title":"Stat. Comput."},{"key":"10.1016\/j.asoc.2023.110829_b24","doi-asserted-by":"crossref","unstructured":"S. L\u00f8kse, F.M. Bianchi, A.B. Salberg, R. Jenssen, Spectral Clustering Using PCKID-A Probabilistic Cluster Kernel for Incomplete Data, in: Scandinavian Conference on Image Analysis, 2017, pp. 431\u2013442.","DOI":"10.1007\/978-3-319-59126-1_36"},{"key":"10.1016\/j.asoc.2023.110829_b25","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.asoc.2017.12.004","article-title":"A spectral clustering method with semantic interpretation based on axiomatic fuzzy set theory","volume":"64","author":"Wang","year":"2018","journal-title":"Appl. Soft Comput."},{"issue":"8","key":"10.1016\/j.asoc.2023.110829_b26","doi-asserted-by":"crossref","first-page":"1532","DOI":"10.1109\/TKDE.2018.2858782","article-title":"Low-rank sparse subspace for spectral clustering","volume":"31","author":"Zhu","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.asoc.2023.110829_b27","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1080\/01969727308546046","article-title":"A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters","volume":"3","author":"Dunn","year":"1973","journal-title":"J. Cybern."},{"year":"1999","series-title":"Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition","author":"Hoppner","key":"10.1016\/j.asoc.2023.110829_b28"},{"key":"10.1016\/j.asoc.2023.110829_b29","doi-asserted-by":"crossref","unstructured":"S.B. Nascimento, B. Mirkin, F. Moura-Pires, A fuzzy clustering model of data and fuzzy c-means, in: Fuzzy Systems, the Ninth IEEE International Conference on, vol. 1, 2000, pp. 302\u2013307.","DOI":"10.1109\/FUZZY.2000.838676"},{"key":"10.1016\/j.asoc.2023.110829_b30","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.knosys.2016.01.048","article-title":"Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values","volume":"99","author":"Zhang","year":"2016","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.asoc.2023.110829_b31","first-page":"674","article-title":"An enhanced fuzzy K-means clustering with application to missing data imputation","volume":"11","author":"Migdady","year":"2018","journal-title":"Electron. J. Appl. Stat. Anal."},{"issue":"11","key":"10.1016\/j.asoc.2023.110829_b32","first-page":"66","article-title":"Evaluation of fuzzy k-means and k-means clustering algorithms in intrusion detection systems","volume":"1","author":"Gharehchopogh","year":"2012","journal-title":"Int. J. Sci. Technol. Res."},{"issue":"3","key":"10.1016\/j.asoc.2023.110829_b33","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1109\/42.996338","article-title":"A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data","volume":"21","author":"Ahmed","year":"2002","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.asoc.2023.110829_b34","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/s00357-011-9072-1","article-title":"The academic journal ranking problem: a fuzzy-clustering approach","volume":"28","author":"Benati","year":"2011","journal-title":"J. Classification"},{"issue":"2","key":"10.1016\/j.asoc.2023.110829_b35","first-page":"89","article-title":"Different objective functions in fuzzy c-means algorithms and kernel-based clustering","volume":"13","author":"Miyamoto","year":"2011","journal-title":"Int. J. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2023.110829_b36","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1016\/j.ins.2018.05.053","article-title":"Multigranulation rough-fuzzy clustering based on shadowed sets","volume":"507","author":"Zhou","year":"2020","journal-title":"Inform. Sci."},{"year":"2013","series-title":"Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application","author":"Wang","key":"10.1016\/j.asoc.2023.110829_b37"},{"issue":"1","key":"10.1016\/j.asoc.2023.110829_b38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2010","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.asoc.2023.110829_b39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/imanum\/22.1.1","article-title":"R-linear convergence of the barzilai and borwein gradient method","volume":"22","author":"Dai","year":"2002","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.asoc.2023.110829_b40","unstructured":"Robert Nishihara, Laurent Lessard, Ben Recht, Andrew Packard, Michael Jordan, A General Analysis of the Convergence of ADMM, in: Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 343\u2013352."},{"key":"10.1016\/j.asoc.2023.110829_b41","series-title":"Graph Theory, Combinatorics, and Applications, Vol. 2","first-page":"871","article-title":"The Laplacian spectrum of graphs","author":"Mohar","year":"1991"},{"key":"10.1016\/j.asoc.2023.110829_b42","series-title":"Graph Symmetry: Algebraic Methods and Applications, Volume 497 of Nato Science Series C","first-page":"225","article-title":"Some applications of Laplace eigenvalues of graphs","author":"Mohar","year":"1997"},{"key":"10.1016\/j.asoc.2023.110829_b43","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s40304-017-0100-2","article-title":"Alternating direction method for separable variables under pair-wise constrains","volume":"5","author":"Yang","year":"2017","journal-title":"Commun. Math. Stat."},{"article-title":"Document clustering based on non-negative matrix factorization","year":"2003","series-title":"Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval","author":"Xu","key":"10.1016\/j.asoc.2023.110829_b44"},{"year":"1986","series-title":"Matching Theory","author":"Lovasz","key":"10.1016\/j.asoc.2023.110829_b45"},{"key":"10.1016\/j.asoc.2023.110829_b46","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.neucom.2015.09.127","article-title":"Fuzzy clustering with the entropy of attribute weights","volume":"198","author":"Zhou","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.110829_b47","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.asoc.2019.02.038","article-title":"New fuzzy C-means clustering method based on feature-weight and cluster-weight learning","volume":"78","author":"Hashemzadeh","year":"2019","journal-title":"Appl. Soft Comput."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623008475?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623008475?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T20:49:48Z","timestamp":1730062188000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494623008475"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":47,"alternative-id":["S1568494623008475"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.asoc.2023.110829","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fuzzy clustering method with approximate orthogonal regularization","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110829","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110829"}}