iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1016/J.AML.2018.11.015
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T00:13:17Z","timestamp":1724285597404},"reference-count":21,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics Letters"],"published-print":{"date-parts":[[2019,6]]},"DOI":"10.1016\/j.aml.2018.11.015","type":"journal-article","created":{"date-parts":[[2018,11,27]],"date-time":"2018-11-27T18:31:52Z","timestamp":1543343512000},"page":"76-84","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":45,"special_numbering":"C","title":["On a backward problem for nonlinear fractional diffusion equations"],"prefix":"10.1016","volume":"92","author":[{"given":"Nguyen Huy","family":"Tuan","sequence":"first","affiliation":[]},{"given":"Le Nhat","family":"Huynh","sequence":"additional","affiliation":[]},{"given":"Tran Bao","family":"Ngoc","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4099-8077","authenticated-orcid":false,"given":"Yong","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aml.2018.11.015_b1","series-title":"Fractional Differential Equations","author":"Podlubny","year":"1999"},{"issue":"9","key":"10.1016\/j.aml.2018.11.015_b2","doi-asserted-by":"crossref","first-page":"1367","DOI":"10.1080\/17415977.2016.1259316","article-title":"On a final value problem for the time-fractional diffusion equation with inhomogeneous source","volume":"25","author":"Tuan","year":"2017","journal-title":"Inverse Probl. Sci. Eng."},{"key":"10.1016\/j.aml.2018.11.015_b3","doi-asserted-by":"crossref","first-page":"1774","DOI":"10.1002\/mma.4705","article-title":"The quasi-reversibility method for a final value problem of the time-fractional diffusion equation with inhomogeneous source","volume":"41","author":"Yang","year":"2018","journal-title":"Math. Methods Appl. Sci."},{"key":"10.1016\/j.aml.2018.11.015_b4","series-title":"The Analysis of Fractional Differential Equationst","author":"Diethelm","year":"2010"},{"key":"10.1016\/j.aml.2018.11.015_b5","series-title":"Fractional Calculus and Wave in Linear Viscoelasticity","author":"Mainardi","year":"2010"},{"key":"10.1016\/j.aml.2018.11.015_b6","first-page":"329","article-title":"A poster about the recent history of fractional calculus","volume":"13","author":"Machado","year":"2010","journal-title":"Fract. Calc. Appl. Anal."},{"key":"10.1016\/j.aml.2018.11.015_b7","doi-asserted-by":"crossref","first-page":"1766","DOI":"10.1016\/j.camwa.2009.08.015","article-title":"Some uniqueness and existence results for the initial\u2013boundary-value problems for the generalized time-fractional diffusion equation","volume":"59","author":"Luchko","year":"2010","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.aml.2018.11.015_b8","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1186\/s13662-015-0707-0","article-title":"Existence and uniqueness of the solution to a coupled fractional diffusion system","volume":"2015","author":"Li","year":"2015","journal-title":"Adv. Difference Equ."},{"key":"10.1016\/j.aml.2018.11.015_b9","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.jmaa.2011.04.058","article-title":"Initial value\/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems","volume":"382","author":"Sakamoto","year":"2011","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.aml.2018.11.015_b10","doi-asserted-by":"crossref","first-page":"3632","DOI":"10.1016\/j.camwa.2018.02.022","article-title":"The backward problem for a time-fractional diffusion-wave equation in a bounded domain","volume":"75","author":"Wei","year":"2018","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.aml.2018.11.015_b11","doi-asserted-by":"crossref","first-page":"1769","DOI":"10.1080\/00036810903479731","article-title":"A backward problem for the time-fractional diffusion equation","volume":"89","author":"Liu","year":"2010","journal-title":"Appl. Anal."},{"key":"10.1016\/j.aml.2018.11.015_b12","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.cam.2014.11.026","article-title":"Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation","volume":"279","author":"Wang","year":"2015","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.aml.2018.11.015_b13","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1051\/m2an\/2013107","article-title":"A modified quasi-boundary value method for the backward time-fractional diffusion problem","volume":"48","author":"Wei","year":"2014","journal-title":"ESAIM Math. Model. Numer. Anal."},{"key":"10.1016\/j.aml.2018.11.015_b14","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1515\/jip-2011-0021","article-title":"Regularization by projection for a backward problem of the time-fractional diffusion equation","volume":"22","author":"Ren","year":"2014","journal-title":"J. Inverse Ill-Posed Probl."},{"key":"10.1016\/j.aml.2018.11.015_b15","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.apnum.2012.11.009","article-title":"Solving a final value fractional diffusion problem by boundary condition regularization","volume":"66","author":"Yang","year":"2013","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.aml.2018.11.015_b16","doi-asserted-by":"crossref","first-page":"842","DOI":"10.1080\/00036811.2017.1293815","article-title":"Tikhonov regularization method for a backward problem for the inhomogeneous time-fractional diffusion equation","volume":"97","author":"Tuan","year":"2018","journal-title":"Appl. Anal."},{"key":"10.1016\/j.aml.2018.11.015_b17","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1016\/j.jmaa.2014.01.031","article-title":"On a backward parabolic problem with local Lipschitz source","volume":"414","author":"Tuan","year":"2014","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.aml.2018.11.015_b18","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.jmaa.2017.02.055","article-title":"Identification of the initial condition in backward problem with nonlinear diffusion and reaction","volume":"452","author":"Vo","year":"2017","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.aml.2018.11.015_b19","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1007\/s11118-017-9663-5","article-title":"Continuity of solutions of a class of fractional equations","volume":"49","author":"Trong","year":"2018","journal-title":"Potential Anal."},{"key":"10.1016\/j.aml.2018.11.015_b20","series-title":"Theory and Applications of Fractional Differential Equations","author":"Kilbas","year":"2006"},{"key":"10.1016\/j.aml.2018.11.015_b21","series-title":"Methods of Mathematical Physics","author":"Courant","year":"1953"}],"container-title":["Applied Mathematics Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893965918303884?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893965918303884?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,7]],"date-time":"2024-04-07T02:35:01Z","timestamp":1712457301000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893965918303884"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6]]},"references-count":21,"alternative-id":["S0893965918303884"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.aml.2018.11.015","relation":{},"ISSN":["0893-9659"],"issn-type":[{"value":"0893-9659","type":"print"}],"subject":[],"published":{"date-parts":[[2019,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On a backward problem for nonlinear fractional diffusion equations","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aml.2018.11.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}