{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T10:24:07Z","timestamp":1720002247789},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2019M653333"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005230","name":"Natural Science Foundation of Chongqing","doi-asserted-by":"publisher","award":["cstc2019jcyj-bshX0038"],"id":[{"id":"10.13039\/501100005230","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11771162","12001067"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics and Computation"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.amc.2021.126580","type":"journal-article","created":{"date-parts":[[2021,8,18]],"date-time":"2021-08-18T00:21:36Z","timestamp":1629246096000},"page":"126580","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schr\u00f6dinger equation"],"prefix":"10.1016","volume":"412","author":[{"given":"Hongyu","family":"Qin","sequence":"first","affiliation":[]},{"given":"Fengyan","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Deng","family":"Ding","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.amc.2021.126580_bib0001","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1155\/1998\/38298","article-title":"Numerically absorbing boundary conditions for quantum evolution equations","volume":"6","author":"Arnold","year":"1998","journal-title":"VLSI Des."},{"key":"10.1016\/j.amc.2021.126580_bib0002","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1088\/0031-8949\/20\/3-4\/012","article-title":"Self-focussing of laser beams in nonlinear media","volume":"20","author":"Konno","year":"1979","journal-title":"Phys. Scripta"},{"key":"10.1016\/j.amc.2021.126580_bib0003","series-title":"Optical Solitons in Fibers","author":"Hasegawa","year":"1989"},{"key":"10.1016\/j.amc.2021.126580_bib0004","series-title":"Solitons in Molecular Systems","author":"Davydov","year":"1985"},{"key":"10.1016\/j.amc.2021.126580_bib0005","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.jcp.2014.03.037","article-title":"An energy conservative difference scheme for the nonlinear fractional Schr\u00f6dinger equations","volume":"293","author":"Wang","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.amc.2021.126580_bib0006","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.matcom.2019.08.006","article-title":"On a conservative fourier spectral Galerkin method for cubic nonlinear Schr\u00f6dinger equation with fractional Laplacian","volume":"168","author":"Zou","year":"2020","journal-title":"Math. Comput. Simulat."},{"key":"10.1016\/j.amc.2021.126580_bib0007","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1016\/j.jcp.2013.03.007","article-title":"Fourth-order compact and energy conservative difference schemes for the nonlinear Schr\u00f6dinger equation in two dimensions","volume":"243","author":"Wang","year":"2013","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.amc.2021.126580_bib0008","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.aml.2018.08.012","article-title":"Solitary wave solutions for nonlinear fractional Schr\u00f6dinger equation in Gaussian nonlocal media","volume":"88","author":"Zou","year":"2019","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.amc.2021.126580_bib0009","first-page":"3705","article-title":"Modified energy for split-step methods applied to the linear Schr\u00f6dinger equation","author":"Debussche","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.amc.2021.126580_bib0010","doi-asserted-by":"crossref","first-page":"1769","DOI":"10.1007\/s10444-018-9593-9","article-title":"Energy preserving model order reduction of the nonlinear Schr\u00f6dinger equation","volume":"44","author":"Karas\u00f6zen","year":"2018","journal-title":"Adv. Comput. Math."},{"issue":"3","key":"10.1016\/j.amc.2021.126580_bib0011","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1360\/012010-846","article-title":"Unconditional convergence of two conservative compact difference schemes for non-linear Schr\u00f6dinger equation in one dimension (in Chinese)","volume":"41","author":"Wang","year":"2011","journal-title":"Sci. Sin. Math."},{"key":"10.1016\/j.amc.2021.126580_bib0012","doi-asserted-by":"crossref","first-page":"1526","DOI":"10.1137\/S0036142994270636","article-title":"Dufort-Frankel-type methods for linear and nonlinear Schr\u00f6dinger equations","volume":"33","author":"Wu","year":"1996","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.amc.2021.126580_bib0013","doi-asserted-by":"crossref","first-page":"1052","DOI":"10.1016\/j.cma.2008.11.011","article-title":"Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schr\u00f6dinger equation","volume":"198","author":"Xie","year":"2009","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"4","key":"10.1016\/j.amc.2021.126580_bib0014","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1016\/j.apnum.2010.12.004","article-title":"Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schr\u00f6dinger equations","volume":"61","author":"Gao","year":"2011","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.amc.2021.126580_bib0015","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.aml.2018.05.007","article-title":"Linearized compact ADI schemes for nonlinear time fractional Schr\u00f6dinger equations","volume":"84","author":"Chen","year":"2018","journal-title":"Appl. Math. Lett."},{"issue":"1","key":"10.1016\/j.amc.2021.126580_bib0016","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1186\/s13661-018-0956-4","article-title":"Several conservative compact schemes for a class of nonlinear Schr\u00f6dinger equations with wave operator","volume":"2018","author":"Cheng","year":"2018","journal-title":"Bound. Value Probl."},{"key":"10.1016\/j.amc.2021.126580_bib0017","doi-asserted-by":"crossref","first-page":"106686","DOI":"10.1016\/j.aml.2020.106686","article-title":"Mass- and energy-conserving difference schemes for nonlinear fractional Schr\u00f6dinger equations","volume":"111","author":"Li","year":"2021","journal-title":"Appl. Math. Lett."},{"issue":"1","key":"10.1016\/j.amc.2021.126580_bib0018","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.jcp.2004.11.001","article-title":"Local discontinuous Galerkin methods for nonlinear Schr\u00f6dinger equations","volume":"205","author":"Xu","year":"2005","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.amc.2021.126580_bib0019","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1093\/imanum\/11.4.509","article-title":"Optimal h1 estimates for two time-discrete Galerkin approximations of a nonlinear Schr\u00f6dinger equation","volume":"11","author":"Tourigny","year":"1991","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.amc.2021.126580_bib0020","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1051\/m2an:2001121","article-title":"On the convergence of a linear two-step finite element method for the nonlinear Schr\u00f6dinger equation","volume":"35","author":"Zouraris","year":"2001","journal-title":"ESAIM-Math. Model. Numer. Anal."},{"issue":"6","key":"10.1016\/j.amc.2021.126580_bib0021","doi-asserted-by":"crossref","first-page":"A3067","DOI":"10.1137\/16M1105700","article-title":"Unconditionally convergent l1-Galerkin FEMs for nonlinear time-fractional Schr\u00f6dinger equations","volume":"39","author":"Li","year":"2017","journal-title":"SIAM. J. Sci. Comput."},{"key":"10.1016\/j.amc.2021.126580_bib0022","doi-asserted-by":"crossref","first-page":"1008","DOI":"10.1137\/090780535","article-title":"Absorbing boundary conditions for general nonlinear Schr\u00f6dinger equations","volume":"33","author":"Antoine","year":"2011","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.amc.2021.126580_bib0023","doi-asserted-by":"crossref","first-page":"979","DOI":"10.1002\/num.20468","article-title":"Numerical solution of nonlinear Schr\u00f6dinger equation by using time-space pseudo-spectral method","volume":"26","author":"Dehghan","year":"2010","journal-title":"Numer. Meth. Part. D. E."},{"key":"10.1016\/j.amc.2021.126580_bib0024","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1137\/S0036142996302396","article-title":"Discrete-time orthogonal spline collocation methods for Schr\u00f6dinger equations in two space variables","volume":"35","author":"Li","year":"1998","journal-title":"SIAM J. Numer. Anal."},{"issue":"5","key":"10.1016\/j.amc.2021.126580_bib0025","doi-asserted-by":"crossref","first-page":"2260","DOI":"10.1016\/j.amc.2010.07.026","article-title":"Split newton iterative algorithm and its application","volume":"217","author":"Li","year":"2010","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.amc.2021.126580_bib0026","series-title":"Introduction to the Theory and Applications of Functional Differential Equations","author":"Kolmanovskii","year":"1999"},{"key":"10.1016\/j.amc.2021.126580_bib0027","article-title":"Delay Effects on Stability","volume":"269","author":"Niculescu","year":"2001"},{"key":"10.1016\/j.amc.2021.126580_bib0028","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.aml.2009.12.003","article-title":"Nonlinear stability of discontinuous Galerkin methods for delay differential equations","volume":"23","author":"Li","year":"2010","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.amc.2021.126580_bib0029","doi-asserted-by":"crossref","first-page":"574","DOI":"10.4208\/jcm.1107-m3433","article-title":"Superconvergence of a discontinuous Galerkin method for first-order linear delay differential equations","volume":"29","author":"Li","year":"2011","journal-title":"J. Comput. Math."},{"issue":"3","key":"10.1016\/j.amc.2021.126580_bib0030","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1016\/j.apm.2012.02.036","article-title":"A linearized compact difference scheme for a class of nonlinear delay partial differential equations","volume":"37","author":"Sun","year":"2013","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.amc.2021.126580_bib0031","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1016\/j.cam.2006.08.030","article-title":"Dissipativity of \u03b8-methods for nonlinear Volterra delay-integro-differential equations","volume":"206","author":"Gan","year":"2007","journal-title":"J. Comput. Appl. Math."},{"issue":"6","key":"10.1016\/j.amc.2021.126580_bib0032","doi-asserted-by":"crossref","first-page":"745","DOI":"10.1080\/10236198.2016.1142539","article-title":"Analysis of the multistep difference schemes for variable coefficient delay parabolic equations","volume":"22","author":"Zhang","year":"2016","journal-title":"J. Differ. Equ. Appl."},{"key":"10.1016\/j.amc.2021.126580_bib0033","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.amc.2017.08.033","article-title":"Compact \u03b8-method for the generalized delay diffusion equation","volume":"316","author":"Zhang","year":"2018","journal-title":"Appl. Math. Comput."},{"issue":"10","key":"10.1016\/j.amc.2021.126580_bib0034","doi-asserted-by":"crossref","first-page":"2106","DOI":"10.1016\/j.camwa.2016.04.003","article-title":"Implicit-explicit time discretization coupled with finite element methods for delayed predator-prey competition reaction-diffusion system","volume":"71","author":"Xiao","year":"2016","journal-title":"Comput. Math. Appl."},{"issue":"10","key":"10.1016\/j.amc.2021.126580_bib0035","doi-asserted-by":"crossref","first-page":"3558","DOI":"10.1016\/j.camwa.2018.02.017","article-title":"The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction-diffusion equations with variable coefficients","volume":"75","author":"Xie","year":"2018","journal-title":"Comput. Math. Appl."},{"issue":"25","key":"10.1016\/j.amc.2021.126580_bib0036","first-page":"1","article-title":"A linearized compact ADI scheme for semilinear parabolic problems with distributed delay","volume":"87","author":"Qin","year":"2021","journal-title":"J. Sci. Comput."},{"issue":"21","key":"10.1016\/j.amc.2021.126580_bib0037","doi-asserted-by":"crossref","first-page":"1647","DOI":"10.1364\/OL.16.001647","article-title":"Numerical study of the raman effect and its impact on soliton-dragging logic gates","volume":"16","author":"Chen","year":"1991","journal-title":"Opt. lett."},{"key":"10.1016\/j.amc.2021.126580_bib0038","series-title":"Nonlinear Fiber Optics","author":"Agrawal","year":"2007"},{"issue":"11","key":"10.1016\/j.amc.2021.126580_bib0039","doi-asserted-by":"crossref","first-page":"3873","DOI":"10.1109\/TAC.2018.2800526","article-title":"Boundary constrained control of delayed nonlinear Schr\u00f6dinger equation","volume":"63","author":"Kang","year":"2018","journal-title":"IEEE Trans. Automat. Control"},{"key":"10.1016\/j.amc.2021.126580_bib0040","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1137\/0324007","article-title":"An example on the effect of time delays in boundary feedback stabilization of wave equations","volume":"24","author":"Datko","year":"1986","journal-title":"SIAM J. Control Optim."},{"key":"10.1016\/j.amc.2021.126580_bib0041","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1109\/9.186332","article-title":"Two examples of ill-posedness with respect to small delays in stabilized elastic systems","volume":"38","author":"Datko","year":"1993","journal-title":"IEEE Trans. Automat. Control."},{"key":"10.1016\/j.amc.2021.126580_bib0042","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1007\/BF00941300","article-title":"Some second-order vibrating systems cannot tolerate small time delays in their damping","volume":"70","author":"Datko","year":"1991","journal-title":"J. Optimiz. Theory Appl."},{"issue":"2","key":"10.1016\/j.amc.2021.126580_bib0043","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1016\/j.apm.2010.07.025","article-title":"Traveling wave solutions for Schr\u00f6dinger equation with distributed delay","volume":"35","author":"Zhao","year":"2011","journal-title":"Appl. Math. Model."},{"issue":"5","key":"10.1016\/j.amc.2021.126580_bib0044","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1080\/00036811.2015.1047830","article-title":"Stabilization for Schr\u00f6dinger equation with a time delay in the boundary input","volume":"95","author":"Cui","year":"2016","journal-title":"Appl. Anal."},{"issue":"3","key":"10.1016\/j.amc.2021.126580_bib0045","doi-asserted-by":"crossref","first-page":"759","DOI":"10.2298\/FIL1803759A","article-title":"On the stability of the Schr\u00f6dinger equation with time delay","volume":"32","author":"Agirseven","year":"2018","journal-title":"Filomat"},{"issue":"1","key":"10.1016\/j.amc.2021.126580_bib0046","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1515\/cmam-2018-0107","article-title":"On the stable difference schemes for the Schr\u00f6dinger equation with time delay","volume":"20","author":"Ashyralyev","year":"2020","journal-title":"Comput. Methods Appl. Math."},{"key":"10.1016\/j.amc.2021.126580_bib0047","series-title":"Numerical Methods of Partial Differential Equations","author":"Sun","year":"2005"},{"key":"10.1016\/j.amc.2021.126580_bib0048","series-title":"Application of Discrete Functional Analysis to the Finite Difference Methods","author":"Zhou","year":"1990"}],"container-title":["Applied Mathematics and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300321006640?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300321006640?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,7]],"date-time":"2023-11-07T13:58:16Z","timestamp":1699365496000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0096300321006640"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":48,"alternative-id":["S0096300321006640"],"URL":"https:\/\/doi.org\/10.1016\/j.amc.2021.126580","relation":{},"ISSN":["0096-3003"],"issn-type":[{"value":"0096-3003","type":"print"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schr\u00f6dinger equation","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics and Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.amc.2021.126580","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126580"}}