iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S42979-021-00508-9
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T10:30:06Z","timestamp":1724754606330},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2021,3,10]],"date-time":"2021-03-10T00:00:00Z","timestamp":1615334400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2021,3,10]],"date-time":"2021-03-10T00:00:00Z","timestamp":1615334400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100006224","name":"Argonne National Laboratory","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006224","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"published-print":{"date-parts":[[2021,5]]},"abstract":"Abstract<\/jats:title>Our recent work (Ayral et al. in Proceedings of IEEE computer society annual symposium on VLSI, ISVLSI, pp 138\u2013140, 2020.10.1109\/ISVLSI49217.2020.00034<\/jats:ext-link>) showed the first implementation of the Quantum Divide and Compute (QDC) method, which allows to break quantum circuits into smaller fragments with fewer qubits and shallower depth. This accommodates the limited number of qubits and short coherence times of quantum processors. This article investigates the impact of different noise sources\u2014readout error, gate error and decoherence\u2014on the success probability of the QDC procedure. We perform detailed noise modeling on the Atos Quantum Learning Machine, allowing us to understand tradeoffs and formulate recommendations about which hardware noise sources should be preferentially optimized. We also describe in detail the noise models we used to reproduce experimental runs on IBM\u2019s Johannesburg processor. This article also includes a detailed derivation of the equations used in the QDC procedure to compute the output distribution of the original quantum circuit from the output distribution of its fragments. Finally, we analyze the computational complexity of the QDC method for the circuit under study via tensor-network considerations, and elaborate on the relation the QDC method with tensor-network simulation methods.<\/jats:p>","DOI":"10.1007\/s42979-021-00508-9","type":"journal-article","created":{"date-parts":[[2021,3,10]],"date-time":"2021-03-10T14:03:33Z","timestamp":1615385013000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Quantum Divide and Compute: Exploring the Effect of Different Noise Sources"],"prefix":"10.1007","volume":"2","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0960-4065","authenticated-orcid":false,"given":"Thomas","family":"Ayral","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5229-7155","authenticated-orcid":false,"given":"Fran\u00e7ois-Marie Le","family":"R\u00e9gent","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8182-2764","authenticated-orcid":false,"given":"Zain","family":"Saleem","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5066-2254","authenticated-orcid":false,"given":"Yuri","family":"Alexeev","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8808-1367","authenticated-orcid":false,"given":"Martin","family":"Suchara","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,10]]},"reference":[{"key":"508_CR1","doi-asserted-by":"publisher","unstructured":"Ayral T, Le Regent FM, Saleem Z, Alexeev Y, Suchara M. Quantum divide and compute: Hardware demonstrations and noisy simulations. In: Proceedings of IEEE computer society annual symposium on VLSI, ISVLSI; 2020, pp. 138\u2013140. https:\/\/doi.org\/10.1109\/ISVLSI49217.2020.00034","DOI":"10.1109\/ISVLSI49217.2020.00034"},{"key":"508_CR2","doi-asserted-by":"publisher","first-page":"79","DOI":"10.22331\/q-2018-08-06-79","volume":"2","author":"J Preskill","year":"2018","unstructured":"Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. https:\/\/doi.org\/10.22331\/q-2018-08-06-79.","journal-title":"Quantum"},{"key":"508_CR3","unstructured":"Kelly J. A preview of Bristlecone, Google\u2019s new quantum processor, Google AI Blog, https:\/\/ai.googleblog.com\/2018\/03\/a-preview-of-bristlecone-googles-new.html, Mar 2018."},{"key":"508_CR4","unstructured":"Knight W. IBM raises the bar with a 50-qubit quantum computer, MIT Technology Review, https:\/\/www.technologyreview.com\/s\/609451\/ibm-raises-the-bar-with-a-50-qubit-quantum-computer\/, Nov 2017."},{"key":"508_CR5","unstructured":"Hsu J. CES 2018: Intel\u2019s 49-qubit chip shoots for quantum supermacy, IEEE Spectrum, https:\/\/spectrum.ieee.org\/tech-talk\/computing\/hardware\/intels-49qubit-chip-aims-for-quantum-supremacy, Jan 2018."},{"issue":"1","key":"508_CR6","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1038\/s41534-016-0004-0","volume":"3","author":"JM Gambetta","year":"2017","unstructured":"Gambetta JM, Chow JM, Steffen M. Building logical qubits in a superconducting quantum computing system. NPJ Quantum Inf. 2017;3(1):2. https:\/\/doi.org\/10.1038\/s41534-016-0004-0.","journal-title":"NPJ Quantum Inf"},{"key":"508_CR7","unstructured":"Monroe C, Kim J. Scaling the ion trap quantum processor. Science. 2013;339(6124):1164\u20131169. https:\/\/science.sciencemag.org\/content\/339\/6124\/1164"},{"issue":"1","key":"508_CR8","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1093\/nsr\/nwy088","volume":"6","author":"M Saffman","year":"2018","unstructured":"Saffman M. Quantum computing with neutral atoms. Natl Sci Rev. 2018;6(1):24\u20135. https:\/\/doi.org\/10.1093\/nsr\/nwy088.","journal-title":"Natl Sci Rev"},{"key":"508_CR9","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1038\/nphys2545","volume":"9","author":"F Dolde","year":"2013","unstructured":"Dolde F, Jakobi I, Naydenov B, Zhao N, Pezzagna S, Trautmann C, Meijer J, Neumann P, Jelezko F, Wrachtrup J. Room-temperature entanglement between single defect spins in diamond. Nat Phys. 2013;9:139. https:\/\/doi.org\/10.1038\/nphys2545.","journal-title":"Nat Phys"},{"key":"508_CR10","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1038\/nature12016","volume":"497","author":"H Bernien","year":"2013","unstructured":"Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen DJ, Childress L, Hanson R. Heralded entanglement between solid-state qubits separated by three metres. Nature. 2013;497:86. https:\/\/doi.org\/10.1038\/nature12016.","journal-title":"Nature"},{"key":"508_CR11","doi-asserted-by":"publisher","first-page":"021043","DOI":"10.1103\/PhysRevX.6.021043","volume":"6","author":"S Bravyi","year":"2016","unstructured":"Bravyi S, Smith G, Smolin JA. Trading classical and quantum computational resources. Phys Rev X. 2016;6:021043. https:\/\/doi.org\/10.1103\/PhysRevX.6.021043.","journal-title":"Phys Rev X"},{"key":"508_CR12","doi-asserted-by":"crossref","unstructured":"Peng T, Harrow A, Ozols M, Wu X. Simulating large quantum circuits on a small quantum computer. 2019. arXiv preprint arXiv:1904.00102.","DOI":"10.1103\/PhysRevLett.125.150504"},{"issue":"3","key":"508_CR13","doi-asserted-by":"publisher","first-page":"032328","DOI":"10.1103\/PhysRevA.100.032328","volume":"100","author":"AW Cross","year":"2019","unstructured":"Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating quantum computers using randomized model circuits. Phys Rev A. 2019;100(3):032328. https:\/\/doi.org\/10.1103\/PhysRevA.100.032328.","journal-title":"Phys Rev A"},{"key":"508_CR14","unstructured":"Perlin MA, Saleem ZH, Suchara M, Osborn JC. Quantum circuits: divide and compute with maximum likelihood tomography. 2020. arXiv preprint arXiv:2005.12702."},{"key":"508_CR15","doi-asserted-by":"crossref","unstructured":"Tang W, Tomesh T, Larson J, Suchara M, Martonosi M. CutQC: using small quantum computers for large quantum circuit evaluations. In: Proceedings of the ACM international conference on architectural support for programming languages and operating systems (ASPLOS); 2021.","DOI":"10.1145\/3445814.3446758"},{"key":"508_CR16","unstructured":"Preskill J. Quantum computing and the entanglement frontier. arXiv:1203.5813, Nov 2012 [Online]."},{"key":"508_CR17","doi-asserted-by":"crossref","unstructured":"Alexeev Y. Evaluation of the intel-QS performance on theta supercomputer. In: Argonne national laboratory\u2014leadership computing facility, Technical report ANL\/ALCF 18\/2, Apr 2018.","DOI":"10.2172\/1463245"},{"key":"508_CR18","doi-asserted-by":"publisher","unstructured":"H\u00e4ner T, Steiger DS. 0.5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the international conference for high performance computing, networking, storage and analysis, ser. SC \u201917. New York: ACM; 2017. pp. 33:1\u201333:10. https:\/\/doi.org\/10.1145\/3126908.3126947","DOI":"10.1145\/3126908.3126947"},{"issue":"6","key":"508_CR19","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1038\/s41567-018-0124-x","volume":"14","author":"S Boixo","year":"2018","unstructured":"Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N, Jiang Z, Bremner MJ, Martinis JM, Neven H. Characterizing quantum supremacy in near-term devices. Nat Phys. 2018;14(6):595\u2013600. https:\/\/doi.org\/10.1038\/s41567-018-0124-x.","journal-title":"Nat Phys"},{"key":"508_CR20","unstructured":"Aleksandrowicz G et al. Qiskit: An open-source framework for quantum computing. 2019."},{"key":"508_CR21","unstructured":"Smelyanskiy M, Sawaya NPD, Aspuru-Guzik A. qHiPSTER: the quantum high performance software testing environment. 2016. arXiv:1601.07195 [Online]."},{"key":"508_CR22","unstructured":"Atos quantum learning machine. https:\/\/atos.net\/wp-content\/uploads\/2018\/07\/Atos-Quantum-Learning-Machine-brochure.pdf. Jun 2018."},{"key":"508_CR23","doi-asserted-by":"publisher","first-page":"49","DOI":"10.22331\/q-2018-01-31-49","volume":"2","author":"DS Steiger","year":"2018","unstructured":"Steiger DS, H\u00e4ner T, Troyer M. ProjectQ: an open source software framework for quantum computing. Quantum. 2018;2:49.","journal-title":"Quantum"},{"issue":"2","key":"508_CR24","doi-asserted-by":"publisher","first-page":"023023","DOI":"10.1088\/1367-2630\/18\/2\/023023","volume":"18","author":"JR McClean","year":"2016","unstructured":"McClean JR, Romero J, Babbush R, Aspuru-Guzik A. The theory of variational hybrid quantum-classical algorithms. New J Phys. 2016;18(2):023023. https:\/\/doi.org\/10.1088\/1367-2630\/18\/2\/023023.","journal-title":"New J Phys"},{"key":"508_CR25","doi-asserted-by":"publisher","first-page":"090501","DOI":"10.1103\/PhysRevLett.110.090501","volume":"110","author":"S Barrett","year":"2013","unstructured":"Barrett S, Hammerer K, Harrison S, Northup TE, Osborne TJ. Simulating quantum fields with cavity QED. Phys Rev Lett. 2013;110:090501. https:\/\/doi.org\/10.1103\/PhysRevLett.110.090501.","journal-title":"Phys Rev Lett"},{"key":"508_CR26","unstructured":"Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm. arXiv:1411.4028. Nov 2014."},{"key":"508_CR27","doi-asserted-by":"publisher","first-page":"042303","DOI":"10.1103\/PhysRevA.92.042303","volume":"92","author":"D Wecker","year":"2015","unstructured":"Wecker D, Hastings MB, Troyer M. Progress towards practical quantum variational algorithms. Phys Rev A. 2015;92:042303. https:\/\/doi.org\/10.1103\/PhysRevA.92.042303.","journal-title":"Phys Rev A"},{"key":"508_CR28","doi-asserted-by":"crossref","unstructured":"Guerreschi GG, Matsuura AY. QAOA for max-cut requires hundreds of qubits for quantum speed-up. arXiv:1812.07589 Dec 2018.","DOI":"10.1038\/s41598-019-43176-9"},{"issue":"5","key":"508_CR29","doi-asserted-by":"publisher","first-page":"052315","DOI":"10.1103\/PhysRevA.100.052315","volume":"100","author":"Y Chen","year":"2019","unstructured":"Chen Y, Farahzad M, Yoo S, Wei T-C. Detector tomography on IBM quantum computers and mitigation of an imperfect measurement. Phys Rev A. 2019;100(5):052315. https:\/\/doi.org\/10.1103\/PhysRevA.100.052315.","journal-title":"Phys Rev A"},{"key":"508_CR30","doi-asserted-by":"crossref","unstructured":"Sarovar M, Proctor T, Rudinger K, Young K, Nielsen E, Blume-Kohout R. Detecting crosstalk errors in quantum information processors. Quantum 2020;4:321. https:\/\/quantum-journal.org\/papers\/q-2020-09-11-321\/","DOI":"10.22331\/q-2020-09-11-321"},{"issue":"2","key":"508_CR31","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1103\/RevModPhys.86.361","volume":"86","author":"E Paladino","year":"2014","unstructured":"Paladino E, Galperin Y, Falci G, Altshuler BL. 1\/ f noise: implications for solid-state quantum information. Rev Mod Phys. 2014;86(2):361\u2013418. https:\/\/doi.org\/10.1103\/RevModPhys.86.361.","journal-title":"Rev Mod Phys"},{"key":"508_CR32","doi-asserted-by":"publisher","unstructured":"Kjaergaard M, Schwartz ME, Braum\u00fcller J, Krantz P, Wang JI-J, Gustavsson S, Oliver WD. Superconducting qubits: current state of play. Annu Rev Condens Matter Phys 2020;11(1):031\u00a0119\u2013050\u00a0605. https:\/\/doi.org\/10.1146\/annurev-conmatphys-031119-050605.","DOI":"10.1146\/annurev-conmatphys-031119-050605"},{"issue":"3","key":"508_CR33","doi-asserted-by":"publisher","first-page":"034040","DOI":"10.1103\/PhysRevApplied.10.034040","volume":"10","author":"J Heinsoo","year":"2018","unstructured":"Heinsoo J, Andersen CK, Remm A, Krinner S, Walter T, Salath\u00e9 Y, Gasparinetti S, Besse J-C, Poto\u010dnik A, Wallraff A, Eichler C. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys Rev Appl. 2018;10(3):034040. https:\/\/doi.org\/10.1103\/PhysRevApplied.10.034040.","journal-title":"Phys Rev Appl"},{"key":"508_CR34","unstructured":"Ibm quantum experience website. https:\/\/quantum-computing.ibm.com\/. Accessed 5 Mar 2020."},{"issue":"7779","key":"508_CR35","doi-asserted-by":"publisher","first-page":"505","DOI":"10.1038\/s41586-019-1666-5","volume":"574","author":"F Arute","year":"2019","unstructured":"Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Guerin S, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandr\u00e0 S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505\u201310. https:\/\/doi.org\/10.1038\/s41586-019-1666-5.","journal-title":"Nature"},{"key":"508_CR36","unstructured":"Rigetti computing website. https:\/\/www.rigetti.com\/what. Accessed 23 Nov 2020."},{"issue":"1","key":"508_CR37","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1016\/j.aop.2010.09.012","volume":"326","author":"U Schollw\u00f6ck","year":"2011","unstructured":"Schollw\u00f6ck U. The density-matrix renormalization group in the age of matrix product states. Ann Phys. 2011;326(1):96\u2013192. https:\/\/doi.org\/10.1016\/j.aop.2010.09.012.","journal-title":"Ann Phys"},{"key":"508_CR38","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1016\/j.aop.2014.06.013","volume":"349","author":"R Orus","year":"2013","unstructured":"Orus R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann Phys. 2013;349:117\u201358. https:\/\/doi.org\/10.1016\/j.aop.2014.06.013.","journal-title":"Ann Phys"},{"issue":"3","key":"508_CR39","doi-asserted-by":"publisher","first-page":"963","DOI":"10.1137\/050644756","volume":"38","author":"IL Markov","year":"2008","unstructured":"Markov IL, Shi Y. Simulating quantum computation by contracting tensor networks. SIAM J Comput. 2008;38(3):963\u201381. https:\/\/doi.org\/10.1137\/050644756.","journal-title":"SIAM J Comput"},{"key":"508_CR40","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41534-019-0196-1","volume":"5","author":"B Villalonga","year":"2019","unstructured":"Villalonga B, Boixo S, Nelson B, Henze C, Rieffel E, Biswas R, Mandr\u00e0 S. A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware. NPJ Quantum Inf. 2019;5:1\u201316. https:\/\/doi.org\/10.1038\/s41534-019-0196-1.","journal-title":"NPJ Quantum Inf"},{"key":"508_CR41","unstructured":"Huang C, Szegedy M, Zhang F, Gao X, Chen J, Shi Y. Alibaba cloud quantum development platform: applications to quantum algorithm design. arXiv preprint arXiv:1909.02559 2019."},{"issue":"29","key":"508_CR42","doi-asserted-by":"publisher","first-page":"819","DOI":"10.21105\/joss.00819","volume":"3","author":"J Gray","year":"2018","unstructured":"Gray J. quimb: a python package for quantum information and many-body calculations. J Open Source Softw. 2018;3(29):819.","journal-title":"J Open Source Softw"},{"key":"508_CR43","unstructured":"Lykov D, Ibrahim C, Galda A, Alexeev Y. Tensor network simulator QTensor. 2020. https:\/\/github.com\/danlkv\/QTensor."},{"key":"508_CR44","doi-asserted-by":"publisher","unstructured":"Wu X-C, Di S, Dasgupta EM, Cappello F, Finkel H, Alexeev Y, Chong FT. Full-state quantum circuit simulationby using data compression. In: Proceedings of the high performance computing,networking, storage and analysis international conference (SC19). Denver IEEE Computer Society; 2019. https:\/\/doi.org\/10.1145\/3295500.3356155.","DOI":"10.1145\/3295500.3356155"},{"key":"508_CR45","unstructured":"Boixo S, Isakov SV, Smelyanskiy VN, Neven H. Simulation of low-depth quantum circuits as complex undirected graphical models. 2017. arXiv preprint arXiv:1712.05384."},{"key":"508_CR46","doi-asserted-by":"crossref","unstructured":"Schutski R, Lykov D, Oseledets I. An adaptive algorithm for quantum circuit simulation. 2019. arXiv preprint arXiv:1911.12242.","DOI":"10.1103\/PhysRevA.101.042335"},{"key":"508_CR47","unstructured":"Saleem ZH, Tariq B, Suchara M. Approaches to constrained quantum approximate optimization. 2020. arXiv preprint arXiv:2010.06660."}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-021-00508-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s42979-021-00508-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-021-00508-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,28]],"date-time":"2021-04-28T19:59:24Z","timestamp":1619639964000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s42979-021-00508-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,10]]},"references-count":47,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2021,5]]}},"alternative-id":["508"],"URL":"http:\/\/dx.doi.org\/10.1007\/s42979-021-00508-9","relation":{},"ISSN":["2662-995X","2661-8907"],"issn-type":[{"value":"2662-995X","type":"print"},{"value":"2661-8907","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,10]]},"assertion":[{"value":"7 December 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 February 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 March 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with Ethical Standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"132"}}