iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S41315-019-00100-8
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,21]],"date-time":"2023-11-21T19:02:26Z","timestamp":1700593346521},"reference-count":51,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2019,8,14]],"date-time":"2019-08-14T00:00:00Z","timestamp":1565740800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,8,14]],"date-time":"2019-08-14T00:00:00Z","timestamp":1565740800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"National Science Foundation","award":["1511139"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Intell Robot Appl"],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1007\/s41315-019-00100-8","type":"journal-article","created":{"date-parts":[[2019,8,14]],"date-time":"2019-08-14T21:30:50Z","timestamp":1565818250000},"page":"298-313","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Sub-optimally solving actuator redundancy in a hybrid neuroprosthetic system with a multi-layer neural network structure"],"prefix":"10.1007","volume":"3","author":[{"given":"Xuefeng","family":"Bao","sequence":"first","affiliation":[]},{"given":"Zhi-Hong","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Paul","family":"Munro","sequence":"additional","affiliation":[]},{"given":"Ziyue","family":"Sun","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1872-0156","authenticated-orcid":false,"given":"Nitin","family":"Sharma","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,14]]},"reference":[{"issue":"2","key":"100_CR1","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1016\/j.isatra.2010.12.007","volume":"50","author":"V Akpan","year":"2011","unstructured":"Akpan, V., Hassapis, G.: Nonlinear model identification and adaptive model predictive control using neural networks. ISA Trans. 50(2), 177\u2013194 (2011)","journal-title":"ISA Trans."},{"key":"100_CR2","unstructured":"Alibeji, N.A., Molazadeh, V., Dicianno, B.E., Sharma, N.: A control scheme that uses dynamic postural synergies to coordinate a hybrid walking neuroprosthesis: theory and experiments. Front. Neurosci. 12, 159 (2018). \n https:\/\/www.frontiersin.org\/article\/10.3389\/fnins.2018.00159\n \n \n (Online)"},{"key":"100_CR3","unstructured":"Alibeji, N.A., Molazadeh, V., Moore-Cligenpeel, F., Sharma, N.: A muscle synergy inspired control design to coordinate functional electrical stimulation and a powered exoskeleton. IEEE Control Syst. Mag. 38, 35\u201360 (2018) (conditionally accepted)"},{"key":"100_CR4","doi-asserted-by":"publisher","first-page":"203","DOI":"10.3389\/fbioe.2015.00203","volume":"3","author":"N Alibeji","year":"2015","unstructured":"Alibeji, N., Kirsch, N., Sharma, N.: A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis. Front. Bioeng. Biotechnol. 3, 203 (2015)","journal-title":"Front. Bioeng. Biotechnol."},{"key":"100_CR5","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1016\/j.conengprac.2016.07.015","volume":"59","author":"N Alibeji","year":"2017","unstructured":"Alibeji, N., Kirsch, N., Sharma, N.: An adaptive low-dimensional control to compensate for actuator redundancy and fes-induced muscle fatigue in a hybrid neuroprosthesis. Control Eng. Pract. 59, 204\u2013219 (2017)","journal-title":"Control Eng. Pract."},{"issue":"1","key":"100_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s41315-017-0042-6","volume":"2","author":"F Anaya","year":"2018","unstructured":"Anaya, F., Thangavel, P., Yu, H.: Hybrid fes-robotic gait rehabilitation technologies: a review on mechanical design, actuation, and control strategies. Int. J. Intell. Robot. Appl. 2(1), 1\u201328 (2018)","journal-title":"Int. J. Intell. Robot. Appl."},{"key":"100_CR7","doi-asserted-by":"crossref","unstructured":"Bao, X., Dicianno, B., Sharma, N.: Model predictive control of a feedback linearized hybrid neuroprosthetic system with a barrier penalty. J. Comput. Nonlinear Dyn. (2019) (in press)","DOI":"10.1115\/1.4042903"},{"key":"100_CR8","doi-asserted-by":"crossref","unstructured":"Bao, X., Sun, Z., Sharma, N.: A recurrent neural network based mpc for a hybrid neuroprosthesis system. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, Melbourne, 12\u201315 Dec 2017","DOI":"10.1109\/CDC.2017.8264356"},{"issue":"2","key":"100_CR9","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1162\/neco.1994.6.2.296","volume":"6","author":"F Beaufays","year":"1994","unstructured":"Beaufays, F., Wan, E.: Relating real-time backpropagation and backpropagation-through-time: an application of flow graph interreciprocity. Neural Comput. 6(2), 296\u2013306 (1994)","journal-title":"Neural Comput."},{"issue":"10","key":"100_CR10","doi-asserted-by":"publisher","first-page":"2399","DOI":"10.1007\/s00421-011-2128-4","volume":"111","author":"C Bickel","year":"2011","unstructured":"Bickel, C., Gregory, C., Dean, J.: Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur. J. Appl. Physiol. 111(10), 2399\u20132407 (2011)","journal-title":"Eur. J. Appl. Physiol."},{"key":"100_CR11","unstructured":"Chen, Y.Q., Yin, T., Babri, H.A.: A stochastic backpropagation algorithm for training neural networks. In: Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat No.97TH8237), vol. 2, pp. 703-707. IEEE, Singapore, 12 Sept 1997"},{"issue":"1","key":"100_CR12","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1186\/1743-0003-11-27","volume":"11","author":"A del Ama","year":"2014","unstructured":"del Ama, A., Gil-Agudo, \u00c1., Pons, J., Moreno, J.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11(1), 27 (2014)","journal-title":"J. Neuroeng. Rehabil."},{"key":"100_CR13","unstructured":"Dodson, A.: A novel user-controlled assisted standing control system for a hybrid neuroprosthesis, Master\u2019s Thesis, University of Pittsburgh (2018)"},{"key":"100_CR14","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/3-540-26415-9_2","volume-title":"Climbing and Walking Robots","author":"WK Durfee","year":"2006","unstructured":"Durfee, W.K.: Gait restoration by functional electrical stimulation. Climbing and Walking Robots, pp. 19\u201326. Springer, Berlin, Heidelberg (2006)"},{"issue":"6","key":"100_CR15","doi-asserted-by":"publisher","first-page":"575","DOI":"10.1007\/BF02368449","volume":"18","author":"WK Durfee","year":"1990","unstructured":"Durfee, W.K., Hausdorff, J.M.: Regulating knee joint position by combining electrical stimulation with a controllable friction brake. Ann. Biomed. Eng. 18(6), 575\u2013596 (1990)","journal-title":"Ann. Biomed. Eng."},{"issue":"3","key":"100_CR16","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1109\/TNSRE.2003.816873","volume":"11","author":"M Goldfarb","year":"2003","unstructured":"Goldfarb, M., Korkowski, K., Harrold, B., Durfee, W.: Preliminary evaluation of a controlled-brake orthosis for FES-aided gait. IEEE Trans. Neural Syst. Rehabil. Eng. 11(3), 241\u2013248 (2003)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"100_CR17","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)"},{"key":"100_CR18","doi-asserted-by":"publisher","DOI":"10.5772\/37638","volume-title":"A real-time gradient method for nonlinear model predictive control","author":"K Graichen","year":"2012","unstructured":"Graichen, K., K\u00e4pernick, B.: A real-time gradient method for nonlinear model predictive control. INTECH Open Access Publisher, London (2012)"},{"issue":"6","key":"100_CR19","doi-asserted-by":"publisher","first-page":"1291","DOI":"10.1109\/TSMCC.2012.2218595","volume":"42","author":"I Grondman","year":"2012","unstructured":"Grondman, I., Busoniu, L., Lopes, G., Babuska, R.: A survey of actor-critic reinforcement learning: standard and natural policy gradients. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42(6), 1291\u20131307 (2012)","journal-title":"IEEE Trans. Syst. Man Cybern. C Appl. Rev."},{"issue":"4","key":"100_CR20","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1109\/TNSRE.2015.2421052","volume":"24","author":"KH Ha","year":"2015","unstructured":"Ha, K.H., Murray, S.A., Goldfarb, M.: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24(4), 455\u2013466 (2015)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"5","key":"100_CR21","doi-asserted-by":"publisher","first-page":"723","DOI":"10.1109\/THMS.2016.2558630","volume":"46","author":"KM Jagodnik","year":"2016","unstructured":"Jagodnik, K.M., Thomas, P.S., Van Den Bogert, A.J., Branicky, M.S., Kirsch, R.F.: Human-like rewards to train a reinforcement learning controller for planar arm movement. IEEE Trans. Human Mach. Syst. 46(5), 723\u2013733 (2016)","journal-title":"IEEE Trans. Human Mach. Syst."},{"issue":"10","key":"100_CR22","doi-asserted-by":"publisher","first-page":"1892","DOI":"10.1109\/TNSRE.2017.2700395","volume":"25","author":"KM Jagodnik","year":"2017","unstructured":"Jagodnik, K.M., Thomas, P.S., van den Bogert, A.J., Branicky, M.S., Kirsch, R.F.: Training an actor-critic reinforcement learning controller for arm movement using human-generated rewards. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1892\u20131905 (2017)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"3","key":"100_CR23","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1207\/s15516709cog1603_1","volume":"16","author":"M Jordan","year":"1992","unstructured":"Jordan, M., Rumelhart, D.: Forward models: supervised learning with a distal teacher. Cogn. Sci. 16(3), 307\u2013354 (1992)","journal-title":"Cogn. Sci."},{"issue":"1","key":"100_CR24","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1109\/TMECH.2014.2334612","volume":"20","author":"E Kayacan","year":"2015","unstructured":"Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Robust tube-based decentralized nonlinear model predictive control of an autonomous tractor-trailer system. IEEE\/ASME Trans. Mechatron. 20(1), 447\u2013456 (2015)","journal-title":"IEEE\/ASME Trans. Mechatron."},{"key":"100_CR25","doi-asserted-by":"publisher","first-page":"2557","DOI":"10.1109\/EMBC.2014.6944144","volume":"2014","author":"N Kirsch","year":"2014","unstructured":"Kirsch, N., Alibeji, N., Fisher, L., Gregory, C., Sharma, N.: A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics. Conf Proc IEEE Eng Med Biol Soc. 2014, 2557\u20132560 (2014). \n https:\/\/doi.org\/10.1109\/EMBC.2014.6944144","journal-title":"Conf Proc IEEE Eng Med Biol Soc."},{"key":"100_CR26","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1016\/j.conengprac.2016.03.005","volume":"58","author":"N Kirsch","year":"2017","unstructured":"Kirsch, N., Alibeji, N., Sharma, N.: Nonlinear model predictive control of functional electrical stimulation. Control Eng. Pract. 58, 319\u2013331 (2017)","journal-title":"Control Eng. Pract."},{"issue":"1","key":"100_CR27","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1109\/TNSRE.2017.2756023","volume":"26","author":"N Kirsch","year":"2018","unstructured":"Kirsch, N., Bao, X., Alibeji, N., Dicianno, B., Sharma, N.: Model-based dynamic control allocation in a hybrid neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 224\u2013232 (2018)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"2","key":"100_CR28","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1109\/86.313148","volume":"2","author":"R Kobetic","year":"1994","unstructured":"Kobetic, R., Marsolais, B.: Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation. IEEE Trans. Rehabil. Eng. 2(2), 66\u201379 (1994)","journal-title":"IEEE Trans. Rehabil. Eng."},{"issue":"3","key":"100_CR29","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1682\/JRRD.2008.07.0087","volume":"46","author":"R Kobetic","year":"2009","unstructured":"Kobetic, R., To, C., Schnellenberger, J., Audu, M., Bulea, T., Gaudio, R., Pinault, G., Tashman, S., Triolo, R.: Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J. Rehabil. Res. Dev. 46(3), 447\u2013462 (2009)","journal-title":"J. Rehabil. Res. Dev."},{"issue":"3","key":"100_CR30","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1109\/MCAS.2009.933854","volume":"9","author":"F Lewis","year":"2009","unstructured":"Lewis, F., Vrabie, D.: Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 9(3), 32\u201350 (2009)","journal-title":"IEEE Circuits Syst. Mag."},{"key":"100_CR31","unstructured":"Lin, L.J., 1993. Reinforcement learning for robots using neural networks. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh PA. Technical Report CMU-CS-93-103 (1993)"},{"issue":"11","key":"100_CR32","doi-asserted-by":"publisher","first-page":"1341","DOI":"10.1002\/rnc.1758","volume":"21","author":"D Mayne","year":"2011","unstructured":"Mayne, D., Kerrigan, E., van Wyk, E., Falugi, P.: Tube-based robust nonlinear model predictive control. Int. J. Robust Nonlinear Control 21(11), 1341\u20131353 (2011)","journal-title":"Int. J. Robust Nonlinear Control"},{"issue":"3","key":"100_CR33","doi-asserted-by":"publisher","first-page":"464","DOI":"10.1109\/3477.499796","volume":"26","author":"RA McCallum","year":"1996","unstructured":"McCallum, R.A.: Hidden state and reinforcement learning with instance-based state identification. IEEE Trans. Syst. Man Cybern. Part B 26(3), 464\u2013473 (1996)","journal-title":"IEEE Trans. Syst. Man Cybern. Part B"},{"key":"100_CR34","unstructured":"Munro, P.: A dual back-propagation scheme for scalar reward learning. In: Ninth Annual Conference of the Cognitive Science Society, pp. 165\u2013176 (1987)"},{"key":"100_CR35","doi-asserted-by":"crossref","unstructured":"Peters, J., Schaal, S.: Policy gradient methods for robotics. In 2006 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 2219-2225. IEEE, Beijing, 9\u201315 Oct 2006","DOI":"10.1109\/IROS.2006.282564"},{"issue":"1","key":"100_CR36","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1109\/86.750554","volume":"7","author":"D Popovi\u0107","year":"1999","unstructured":"Popovi\u0107, D., Stein, R., O\u011fuzt\u00f6reli, M., Lebiedowska, M., Joni\u0107, S.: Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans. Rehabil. Eng. 7(1), 69\u201379 (1999)","journal-title":"IEEE Trans. Rehabil. Eng."},{"key":"100_CR37","doi-asserted-by":"publisher","first-page":"1157","DOI":"10.1016\/0021-9290(96)00012-7","volume":"29","author":"R Riener","year":"1996","unstructured":"Riener, R., Quintern, J., Schmidt, G.: Biomechanical model of the human knee evaluated by neuromuscular stimulation. J. Biomech. 29, 1157\u20131167 (1996)","journal-title":"J. Biomech."},{"key":"100_CR38","doi-asserted-by":"crossref","unstructured":"Schaefer, A.M., Schneegass, D., Sterzing, V., Udluft, S.: A neural reinforcement learning approach to gas turbine control. In: 2007 International Joint Conference on Neural Networks, pp. 1691\u20131696. IEEE (2007)","DOI":"10.1109\/IJCNN.2007.4371212"},{"key":"100_CR39","unstructured":"Sch\u00e4fer, A.M., Udluft, S., et al.: Solving partially observable reinforcement learning problems with recurrent neural networks. In: Workshop Proceedings of the European Conference on Machine Learning, pp. 71\u201381 (2005)"},{"key":"100_CR40","doi-asserted-by":"crossref","unstructured":"Sch\u00e4fer, A.M., Udluft, S., Zimmermann, H.G.: A recurrent control neural network for data efficient reinforcement learning. In: 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pp. 151\u2013157. IEEE (2007)","DOI":"10.1109\/ADPRL.2007.368182"},{"key":"100_CR41","unstructured":"Sharma, N., Kirsch, N.A., Alibeji, N.A., Dixon, W.E.: A non-linear control method to compensate for muscle fatigue during neuromuscular electrical stimulation. Front. Robot. AI 4, 68 (2017). \n https:\/\/www.frontiersin.org\/article\/10.3389\/frobt.2017.00068\n \n \n (Online)"},{"issue":"6","key":"100_CR42","doi-asserted-by":"publisher","first-page":"576","DOI":"10.1109\/TNSRE.2009.2023294","volume":"17","author":"N Sharma","year":"2012","unstructured":"Sharma, N., Stegath, K., Gregory, C.M., Dixon, W.E.: Nonlinear neuromuscular electrical stimulation tracking control of a human limb. IEEE Trans. Neural Syst. Rehabil. Eng. 17(6), 576\u2013584 (2012)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"100_CR43","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1109\/TNSRE.2013.2280520","volume":"22","author":"N Sharma","year":"2014","unstructured":"Sharma, N., Mushahwar, V., Stein, R.: Dynamic optimization of FES and orthosis-based walking using simple models. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 114\u2013126 (2014)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"7587","key":"100_CR44","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1038\/nature16961","volume":"529","author":"D Silver","year":"2016","unstructured":"Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484\u2013489 (2016)","journal-title":"Nature"},{"key":"100_CR45","first-page":"1057","volume":"99","author":"R Sutton","year":"1999","unstructured":"Sutton, R., McAllester, D., Singh, S., Mansour, Y., et al.: Policy gradient methods for reinforcement learning with function approximation. NIPS 99, 1057\u20131063 (1999)","journal-title":"NIPS"},{"issue":"1","key":"100_CR46","doi-asserted-by":"publisher","first-page":"76","DOI":"10.3182\/20050703-6-CZ-1902.01415","volume":"38","author":"H Vallery","year":"2005","unstructured":"Vallery, H., St\u00fctzle, T., Buss, M., Abel, D.: Control of a hybrid motor prosthesis for the knee joint. IFAC Proc. Vol. 38(1), 76\u201381 (2005)","journal-title":"IFAC Proc. Vol."},{"key":"100_CR47","doi-asserted-by":"crossref","unstructured":"Vrabie, D., Vamvoudakis, K.G., Lewis, F.L.: Optimal adaptive control and differential games by reinforcement learning principles, vol. 2. IET Press (2013)","DOI":"10.1049\/PBCE081E"},{"issue":"2","key":"100_CR48","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1109\/MCI.2009.932261","volume":"4","author":"F-Y Wang","year":"2009","unstructured":"Wang, F.-Y., Zhang, H., Liu, D.: Adaptive dynamic programming: an introduction. IEEE Comput. Intell. Mag. 4(2), 39\u201347 (2009)","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"10","key":"100_CR49","doi-asserted-by":"publisher","first-page":"1550","DOI":"10.1109\/5.58337","volume":"78","author":"PJ Werbos","year":"1990","unstructured":"Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550\u20131560 (1990)","journal-title":"Proc. IEEE"},{"issue":"3\u20134","key":"100_CR50","first-page":"229","volume":"8","author":"R Williams","year":"1992","unstructured":"Williams, R.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3\u20134), 229\u2013256 (1992)","journal-title":"Mach. Learn."},{"key":"100_CR51","volume-title":"Data Mining: Practical Machine Learning Tools and Techniques","author":"IH Witten","year":"2016","unstructured":"Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)"}],"container-title":["International Journal of Intelligent Robotics and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s41315-019-00100-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s41315-019-00100-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s41315-019-00100-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T00:02:24Z","timestamp":1597276944000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s41315-019-00100-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,14]]},"references-count":51,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,9]]}},"alternative-id":["100"],"URL":"http:\/\/dx.doi.org\/10.1007\/s41315-019-00100-8","relation":{},"ISSN":["2366-5971","2366-598X"],"issn-type":[{"value":"2366-5971","type":"print"},{"value":"2366-598X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,8,14]]},"assertion":[{"value":"9 April 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 August 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 August 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}