iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S13748-017-0112-X
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,26]],"date-time":"2024-04-26T14:31:21Z","timestamp":1714141881918},"reference-count":24,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2017,1,27]],"date-time":"2017-01-27T00:00:00Z","timestamp":1485475200000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Spanish Ministry of Economy and Competitiveness","award":["TIN-2014-55252-P"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Prog Artif Intell"],"published-print":{"date-parts":[[2017,6]]},"DOI":"10.1007\/s13748-017-0112-x","type":"journal-article","created":{"date-parts":[[2017,1,27]],"date-time":"2017-01-27T18:17:02Z","timestamp":1485541022000},"page":"145-158","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Exhaustive search algorithms to mine subgroups on Big Data using Apache Spark"],"prefix":"10.1007","volume":"6","author":[{"given":"F.","family":"Padillo","sequence":"first","affiliation":[]},{"given":"J. M.","family":"Luna","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4216-6378","authenticated-orcid":false,"given":"S.","family":"Ventura","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,1,27]]},"reference":[{"issue":"1","key":"112_CR1","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1109\/TKDE.2013.109","volume":"26","author":"X Wu","year":"2014","unstructured":"Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97\u2013107 (2014)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"112_CR2","volume-title":"Data Mining: Concepts and Techniques","author":"J Han","year":"2011","unstructured":"Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2011)"},{"issue":"3","key":"112_CR3","doi-asserted-by":"publisher","first-page":"495","DOI":"10.1007\/s10115-010-0356-2","volume":"29","author":"F Herrera","year":"2010","unstructured":"Herrera, F., Carmona, C.J., Gonz\u00e1lez, P., Jesus, M.J.: An overview on subgroup discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495\u2013525 (2010)","journal-title":"Knowl. Inf. Syst."},{"key":"112_CR4","volume-title":"Pattern Mining with Evolutionary Algorithms","author":"S Ventura","year":"2016","unstructured":"Ventura, S., Luna, J.M.: Pattern Mining with Evolutionary Algorithms. Springer, Berlin (2016)"},{"issue":"2","key":"112_CR5","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1145\/170036.170072","volume":"22","author":"R Agrawal","year":"1993","unstructured":"Agrawal, R., Imieli\u0144ski, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207\u2013216 (1993)","journal-title":"SIGMOD Rec."},{"issue":"2","key":"112_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/335191.335372","volume":"29","author":"J Han","year":"2000","unstructured":"Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1\u201312 (2000)","journal-title":"SIGMOD Rec."},{"issue":"12","key":"112_CR7","doi-asserted-by":"publisher","first-page":"2329","DOI":"10.1109\/TCYB.2014.2306819","volume":"44","author":"JM Luna","year":"2014","unstructured":"Luna, J.M., Romero, J.R., Romero, C., Ventura, S.: On the use of genetic programming for mining comprehensible rules in subgroup discovery. IEEE Trans. Cybernet. 44(12), 2329\u20132341 (2014)","journal-title":"IEEE Trans. Cybernet."},{"key":"112_CR8","first-page":"833","volume":"3","author":"T Scheffer","year":"2003","unstructured":"Scheffer, T., Wrobel, S.: Finding the most interesting patterns in a database quickly by using sequential sampling. J. Mach. Learn. Res. 3, 833\u2013862 (2003)","journal-title":"J. Mach. Learn. Res."},{"key":"112_CR9","doi-asserted-by":"crossref","unstructured":"Grosskreutz, H., R\u00fcping, S., Wrobel, S.: Proceedings, Part I European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008. Tight Optimistic Estimates for Fast Subgroup Discovery (Berlin, Heidelberg, 2008) pp. 440\u2013456 (2008)","DOI":"10.1007\/978-3-540-87479-9_47"},{"key":"112_CR10","unstructured":"Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, Ser. HotCloud\u201910, Berkeley (2010)"},{"key":"112_CR11","unstructured":"Kl\u00f6sgen, W.: Advances in knowledge discovery and data mining. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Explora: A Multipattern and Multistrategy Discovery Assistant, pp. 249\u2013271. American Association for Artificial Intelligence, Menlo Park (1996)"},{"key":"112_CR12","doi-asserted-by":"crossref","unstructured":"Kav\u0161ek, B., Lavra\u010d, N., Jovanoski, V.: 5th International Symposium on Intelligent Data Analysis, IDA: ch, pp. 230\u2013241. APRIORI-SD, Adapting Association Rule Learning to Subgroup Discovery (2003)","DOI":"10.1007\/978-3-540-45231-7_22"},{"key":"112_CR13","doi-asserted-by":"publisher","unstructured":"Atzmueller, M., Puppe, F.: Sd-map-a fast algorithm for exhaustive subgroup discovery. In: 17th European Conference on Machine Learning and 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (ECML\/PKDD 2006). Lecture Notes on Computer Science, vol. 4213, pp. 6\u201317. Springer (2006)","DOI":"10.1007\/11871637_6"},{"key":"112_CR14","volume-title":"Explora: A Multipattern and Multistrategy Discovery Assistant","author":"W Kl\u00f6sgen","year":"1996","unstructured":"Kl\u00f6sgen, W.: Advances in knowledge discovery and data mining. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Explora: A Multipattern and Multistrategy Discovery Assistant. American Association for Artificial Intelligence, Menlo Park (1996)"},{"key":"112_CR15","doi-asserted-by":"publisher","unstructured":"Garc\u00eda, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Switzerland (2015)","DOI":"10.1007\/978-3-319-10247-4"},{"issue":"3","key":"112_CR16","doi-asserted-by":"publisher","first-page":"711","DOI":"10.1007\/s10618-015-0436-8","volume":"30","author":"F Lemmerich","year":"2015","unstructured":"Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Discov. 30(3), 711\u2013762 (2015)","journal-title":"Data Min. Knowl. Discov."},{"key":"112_CR17","doi-asserted-by":"publisher","unstructured":"Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Foundations of Intelligent Systems, pp. 35\u201344. Springer, Berlin (2009)","DOI":"10.1007\/978-3-642-04125-9_7"},{"key":"112_CR18","doi-asserted-by":"crossref","unstructured":"Grosskreutz, H., R\u00fcping, S., Wrobel, S.: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, ch. Tight Optimistic Estimates for Fast Subgroup Discovery, pp. 440\u2013456","DOI":"10.1007\/978-3-540-87479-9_47"},{"key":"112_CR19","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781139058452","volume-title":"Mining of Massive Datasets","author":"A Rajaraman","year":"2011","unstructured":"Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)"},{"key":"112_CR20","doi-asserted-by":"publisher","unstructured":"Padillo, F., Luna, J.M., Cano, A., Ventura, S.: A data structure to speed-up machine learning algorithms on massive datasets. In: Proceedings of the 11th International Conference on Hybrid Artificial Intelligence Systems, ser. HAIS 2016, Seville, Spain, pp. 365\u2013376 (2016)","DOI":"10.1007\/978-3-319-32034-2_31"},{"key":"112_CR21","doi-asserted-by":"publisher","unstructured":"Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM - 50th anniversary issue: 1958 - 2008, 51(1), 107\u2013113 (2008)","DOI":"10.1145\/1327452.1327492"},{"key":"112_CR22","volume-title":"Hadoop in Action","author":"C Lam","year":"2010","unstructured":"Lam, C.: Hadoop in Action, 1st edn. Manning Publications Co., Greenwich (2010)","edition":"1"},{"issue":"3","key":"112_CR23","first-page":"1","volume":"5","author":"JM Luna","year":"2016","unstructured":"Luna, J.M.: Pattern mining: current status and emerging topics. Prog. Artif. Intel. 5(3), 1\u20136 (2016)","journal-title":"Prog. Artif. Intel."},{"key":"112_CR24","doi-asserted-by":"publisher","unstructured":"Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: Parallel fp-growth for query recommendation. In: Proceedings of the 2008 ACM Conference on Recommender Systems, ser. RecSys \u201908. New York, NY, USA: ACM, pp. 107\u2013114 (2008)","DOI":"10.1145\/1454008.1454027"}],"container-title":["Progress in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s13748-017-0112-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13748-017-0112-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13748-017-0112-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T22:43:42Z","timestamp":1658529822000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s13748-017-0112-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,1,27]]},"references-count":24,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2017,6]]}},"alternative-id":["112"],"URL":"https:\/\/doi.org\/10.1007\/s13748-017-0112-x","relation":{},"ISSN":["2192-6352","2192-6360"],"issn-type":[{"value":"2192-6352","type":"print"},{"value":"2192-6360","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,1,27]]}}}