{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T00:08:10Z","timestamp":1721434090510},"reference-count":50,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T00:00:00Z","timestamp":1706486400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T00:00:00Z","timestamp":1706486400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Graduate Innovation Program of China University of Mining and Technology","award":["2023WLJCRCZL112"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61973306","62373361"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004608","name":"Natural Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","award":["BK20200086"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Key Research and Development Program of China","award":["2022YFB3304700"]},{"name":"Postgraduate Research & Practice Innovation Program of Jiangsu Province","award":["KYCX23_2714"]},{"name":"Open Project Foundation of State Key Laboratory of Process Automation in Mining & Metallurgy","award":["BGRIMM-KZSKL-2021-11"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Mach. Learn. & Cyber."],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1007\/s13042-023-02075-2","type":"journal-article","created":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T17:03:26Z","timestamp":1706547806000},"page":"2957-2972","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multi-target regression via stochastic configuration networks with modular stacked structure"],"prefix":"10.1007","volume":"15","author":[{"given":"Shang","family":"Wu","sequence":"first","affiliation":[]},{"given":"Xin","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Yu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3057-7225","authenticated-orcid":false,"given":"Wei","family":"Dai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,29]]},"reference":[{"key":"2075_CR1","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1002\/widm.1157","volume":"5","author":"H Borchani","year":"2015","unstructured":"Borchani H, Varando G, Bielza C, Larranaga P (2015) A survery on multi-output regression. Wires Data Mini Know Disc 5:216\u2013223","journal-title":"Wires Data Mini Know Disc"},{"key":"2075_CR2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.future.2021.01.028","volume":"123","author":"M Gheisari","year":"2021","unstructured":"Gheisari M et al (2021) OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Gener Comput Syst 123:1\u201313","journal-title":"Future Gener Comput Syst"},{"key":"2075_CR3","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.comcom.2021.04.002","volume":"173","author":"KM Mao","year":"2021","unstructured":"Mao KM et al (2021) Multi-source fusion for weak target images in the Industrial Internet of Things. Comput Commun 173:150\u2013159","journal-title":"Comput Commun"},{"key":"2075_CR4","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.comcom.2023.04.006","volume":"205","author":"YF Zou","year":"2023","unstructured":"Zou YF, Yin HF, Zheng YW, Dressler F (2023) Multi-agent reinforcement learning enabled link scheduling for next generation Internet of Things. Comput Commun 205:35\u201344","journal-title":"Comput Commun"},{"key":"2075_CR5","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1007\/s13042-015-0402-1","volume":"6","author":"WWY Ng","year":"2015","unstructured":"Ng WWY, Li JC, Feng SY, Ma TJ (2015) Sensitivity based image filtering for multi-hashing in large scale image retrieval problems. Int. J. Mach. Learn. & Cyber. 6:777\u2013794","journal-title":"Int. J. Mach. Learn. & Cyber."},{"key":"2075_CR6","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.egyr.2023.02.063","volume":"9","author":"QZ Chen","year":"2023","unstructured":"Chen QZ et al (2023) Research on tree image retrieval method based on twin network multi feature fusion. Energy Rep 9:163\u2013170","journal-title":"Energy Rep"},{"issue":"4","key":"2075_CR7","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1109\/TPAMI.2020.2975798","volume":"43","author":"CG Yan","year":"2021","unstructured":"Yan CG, Gong B, Wei YX, Gao Y (2021) Deep Multi-View Enhancement Hashing for Image Retrieval. IEEE Trans Pattern Anal Mach Intell 43(4):1445\u20131451","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2075_CR8","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.patrec.2023.07.015","volume":"173","author":"HJ Liu","year":"2023","unstructured":"Liu HJ, Xu SG, Wang JH (2023) Multi-dataset fusion for multi-task learning on face attribute recognition. Pattern Recognit Lett 173:72\u201378","journal-title":"Pattern Recognit Lett"},{"issue":"29","key":"2075_CR9","first-page":"1","volume":"18","author":"CG Yan","year":"2022","unstructured":"Yan CG et al (2022) Age-Invariant Face-Recognition By Multi Feature Fusion and Decomposition with Self-Attention. Acm Trans Multimedia Comput Commun Appl 18(29):1\u201318","journal-title":"Acm Trans Multimedia Comput Commun Appl"},{"issue":"6","key":"2075_CR10","doi-asserted-by":"crossref","first-page":"7917","DOI":"10.1109\/TPAMI.2022.3217882","volume":"45","author":"ZZ Huang","year":"2023","unstructured":"Huang ZZ, Zhang JP, Shan HM (2023) When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark. IEEE Trans Pattern Anal Mach Intell 45(6):7917\u20137932","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2075_CR11","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.ins.2017.06.017","volume":"415\u2013416","author":"G Melki","year":"2017","unstructured":"Melki G, Cano A, Kecman V, Ventura S (2017) Multi-target support vector regression via correlation regressor chains. Inf Sci 415\u2013416:53\u201369","journal-title":"Inf Sci"},{"issue":"5","key":"2075_CR12","doi-asserted-by":"crossref","first-page":"1575","DOI":"10.1109\/TNNLS.2017.2651068","volume":"29","author":"XT Zhen","year":"2018","unstructured":"Zhen XT, Yu MY, Zheng F et al (2018) Multitarget sparse latent regression. IEEE Trans Neural Netw Learn Syst 29(5):1575\u20131586","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"2075_CR13","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.1016\/j.neucom.2017.09.055","volume":"275","author":"SB Chen","year":"2018","unstructured":"Chen SB, Zhang Y, Ding CHQ, Zhou ZL, Luo B (2018) A discriminative multi-class feature selection method via weighted l2,1-norm and Extended Elastic Net. Neurocomputing 275:1140\u20131149","journal-title":"Neurocomputing"},{"key":"2075_CR14","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.knosys.2018.06.032","volume":"160","author":"HL Yuan","year":"2018","unstructured":"Yuan HL, Zheng JJ, Lai LL, Tang YY (2018) Sparse structural feature selection for multitarget regression. Knowledge-based Syst 160:200\u2013209","journal-title":"Knowledge-based Syst"},{"key":"2075_CR15","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1016\/j.neucom.2021.12.048","volume":"492","author":"SR Arashloo","year":"2022","unstructured":"Arashloo SR, Kittler J (2022) Multi-target regression via non-linear output structure learning. Neurocomputing 492:572\u2013580","journal-title":"Neurocomputing"},{"key":"2075_CR16","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.apm.2020.09.002","volume":"90","author":"D Dinh-Cong","year":"2021","unstructured":"Dinh-Cong D, Nguyen-Thoi T, Nguyen DT (2021) A two-stage multi-damage detection approach for composite structures using MKECR-Tikhonov regularization iterative method and model updating procedure. Appl Math Model 90:114\u2013130","journal-title":"Appl Math Model"},{"issue":"2","key":"2075_CR17","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1109\/TPAMI.2017.2688363","volume":"40","author":"XT Zhen","year":"2018","unstructured":"Zhen XT, Yu MY, He XF, Li S (2018) Multi-target regression via robust low-rank learning. IEEE Trans Pattern Anal Mach Intell 40(2):497\u2013504","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"122","key":"2075_CR18","first-page":"1","volume":"16","author":"CG Yan","year":"2020","unstructured":"Yan CG, Li ZS, Zhang YB, Liu YT, Ji XY, Zhang YD (2020) Depth image denoising using nuclear norm and learning graph model. ACM Trans Multimedia Comput Commun Appl 16(122):1\u201317","journal-title":"ACM Trans Multimedia Comput Commun Appl"},{"key":"2075_CR19","doi-asserted-by":"crossref","first-page":"103932","DOI":"10.1016\/j.dsp.2023.103932","volume":"134","author":"JW Xu","year":"2023","unstructured":"Xu JW, Fu YL, Xiang YJ (2023) An edge map-guided acceleration strategy for multi-scale weighted nuclear norm minimization-based image denoising. Digital Signal Processing 134:103932","journal-title":"Digital Signal Processing"},{"key":"2075_CR20","unstructured":"Spyromitros XE, Groves W, Tsoumakas G, Vlahavas I (2012) Multi-target classification methods for multi-target regression. arXiv:1211.6581v1"},{"key":"2075_CR21","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/s10994-016-5546-z","volume":"104","author":"XE Spyromitros","year":"2016","unstructured":"Spyromitros XE, Tsoumakas G, Groves W, Vlahavas I (2016) Multi-target regression via input space expansion: treating targets as inputs. Mach Learn 104:55\u201398","journal-title":"Mach Learn"},{"key":"2075_CR22","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.biosystemseng.2018.04.023","volume":"171","author":"EJ Santana","year":"2018","unstructured":"Santana EJ, Geronimo BC, Mastelini SM, Carvalho RH, Barbin DF, Ida EI Jr, SB, (2018) Predicting poultry meat characteristics using an enhanced multi-target regression method. Bios Engineering 171:193\u2013204","journal-title":"Bios Engineering"},{"key":"2075_CR23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.chemolab.2020.104231","volume":"209","author":"EJ Santana","year":"2021","unstructured":"Santana EJ, Santos FRD, Mastelini SM, Melquiades FL Jr, SB, (2021) Improved prediction of soil properties with multi-target stacked generalization on EDXRF spectra. Chemometrics and Intell Laboratory Syst 209:1\u201312","journal-title":"Chemometrics and Intell Laboratory Syst"},{"key":"2075_CR24","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1007\/s11265-018-1376-5","volume":"91","author":"SM Mastelini","year":"2019","unstructured":"Mastelini SM, Costa VGTD, Santana EJ, Nakano FK, Guido RC, Cerri R Jr, SB, (2019) Multi-output tree chaining: an interpretative modeling and lightweight multi-target approach. J of Signal Process Syst 91:191\u2013215","journal-title":"J of Signal Process Syst"},{"key":"2075_CR25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2020.106215","volume":"91","author":"SM Mastelini","year":"2020","unstructured":"Mastelini SM, Santana EJ, Cerri R Jr, SB, (2020) DSTARS: A multi-target deep structure for tracking asynchronous regressor stacking. Applied Soft Computing 91:1\u201327","journal-title":"Applied Soft Computing"},{"key":"2075_CR26","first-page":"25","volume":"1","author":"EJ Santana","year":"2017","unstructured":"Santana EJ, Mastelini SM Jr, SB, (2017) Deep regressor stacking for air ticket prices prediction. Brazilian Symposium on Inf Syst 1:25\u201331","journal-title":"Brazilian Symposium on Inf Syst"},{"key":"2075_CR27","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1007\/978-3-662-44845-8_15","volume":"8726","author":"G Tsoumakas","year":"2014","unstructured":"Tsoumakas G, Spyromitros XE, Verkou A, Vlahavas I (2014) Multi-target regression via random linear target combinations. Mach Learn and Knowl Discovery in Databases 8726:225\u2013240","journal-title":"Mach Learn and Knowl Discovery in Databases"},{"key":"2075_CR28","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.ins.2021.11.003","volume":"584","author":"GJ Aguiar","year":"2022","unstructured":"Aguiar GJ, Santana EJ, Carvalho ACPFD, Junior SB (2022) Using meta-learning for multi-target regression. Inf Sci 584:665\u2013684","journal-title":"Inf Sci"},{"key":"2075_CR29","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.knosys.2019.01.030","volume":"170","author":"J Wang","year":"2019","unstructured":"Wang J, Chen ZL, Sun KW, Li H, Deng X (2019) Multi-target regression via target specific features. Konwledge-Based Syst 170:70\u201378","journal-title":"Konwledge-Based Syst"},{"issue":"11","key":"2075_CR30","first-page":"2092","volume":"48","author":"J Wang","year":"2020","unstructured":"Wang J, Gao XR, Zhang R, Sun KW, Deng X (2020) Multi-target regression via specific features and inter-target correlations. Acta Electron Sin 48(11):2092\u20132100","journal-title":"Acta Electron Sin"},{"key":"2075_CR31","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1016\/j.neucom.2017.08.044","volume":"273","author":"Z Zeng","year":"2018","unstructured":"Zeng Z, Liang NY, Yang XL, Hoi S (2018) Multi-target deep neural networks: theoretical analysis and implementation. Neurocomputing 273:634\u2013642","journal-title":"Neurocomputing"},{"key":"2075_CR32","doi-asserted-by":"crossref","first-page":"1950014","DOI":"10.1142\/S012906571950014X","volume":"29","author":"O Reyes","year":"2019","unstructured":"Reyes O, Ventura S (2019) Performing multi-target regression via a parameter sharing-based deep network. Int J of Neural Syst 29:1950014","journal-title":"Int J of Neural Syst"},{"key":"2075_CR33","doi-asserted-by":"crossref","unstructured":"Adhaityar BY, Sahara DP, Pratama C, Wibowo A, Heliani LS (2021) Multi-target regression using convolutional neural network-random forests (CNN-RF) for early earthquake warning system. In: 2021 9th International Conference on Information and Communication Technology (ICoICT), IEEE, pp 31-36","DOI":"10.1109\/ICoICT52021.2021.9527461"},{"key":"2075_CR34","doi-asserted-by":"crossref","unstructured":"Singh VM, Rao S, Ghorpade AJ (2021) Bi-directional chains of neural nets for multi-target regression. In: 2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS), IEEE, pp 253-259","DOI":"10.1109\/ICoIAS53694.2021.00052"},{"issue":"110","key":"2075_CR35","first-page":"1","volume":"17","author":"CG Yan","year":"2021","unstructured":"Yan CG et al (2021) Precise no-reference image quality evaluation based on distortion identification. ACM Trans Multimedia Comput Commun Appl 17(110):1\u201321","journal-title":"ACM Trans Multimedia Comput Commun Appl"},{"key":"2075_CR36","doi-asserted-by":"crossref","first-page":"2283","DOI":"10.1007\/s13042-018-0867-9","volume":"10","author":"PM Alfaro","year":"2019","unstructured":"Alfaro PM, Arg\u00fcelles A, Chairez I, Perez A (2019) Automatic electroencephalographic information classifier based on recurrent neural networks. Int J Mach Learn Cybern 10:2283\u20132295","journal-title":"Int J Mach Learn Cybern"},{"key":"2075_CR37","doi-asserted-by":"crossref","first-page":"6017","DOI":"10.1007\/s12652-020-02623-6","volume":"14","author":"AA Movassagh","year":"2023","unstructured":"Movassagh AA et al (2023) Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Human Comput 14:6017\u20136025","journal-title":"J Ambient Intell Human Comput"},{"issue":"1","key":"2075_CR38","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/TCSVT.2021.3067449","volume":"32","author":"CG Yan","year":"2021","unstructured":"Yan CG et al (2021) Task-Adaptive Attention for Image Captioning. IEEE Trans Circuits Syst Video Technol 32(1):43\u201351","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"key":"2075_CR39","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1007\/s13042-022-01660-1","volume":"14","author":"J Li","year":"2023","unstructured":"Li J, Wang YF, Luo CJ et al (2023) CNN-LDNF: an image feature representation approach with multi-space mapping. Int J Mach Learn Cybern 14:739\u2013759","journal-title":"Int J Mach Learn Cybern"},{"issue":"2","key":"2075_CR40","doi-asserted-by":"crossref","first-page":"110","DOI":"10.2174\/2213275911666181115093050","volume":"12","author":"J Sethuraman","year":"2019","unstructured":"Sethuraman J et al (2019) Eccentric Methodology with Optimization to Unearth Hidden Facts of Search Engine Result Pages. Recent Patents Comput Sci 12(2):110\u2013119","journal-title":"Recent Patents Comput Sci"},{"issue":"10","key":"2075_CR41","doi-asserted-by":"crossref","first-page":"3466","DOI":"10.1109\/TCYB.2017.2734043","volume":"47","author":"DH Wang","year":"2017","unstructured":"Wang DH, Li M (2017) Stochastic configuration networks: fundamentals and algorithms. IEEE Trans on Cyber 47(10):3466\u20133479","journal-title":"IEEE Trans on Cyber"},{"issue":"2","key":"2075_CR42","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1109\/TAI.2022.3162570","volume":"4","author":"QJ Wang","year":"2022","unstructured":"Wang QJ, Hong QQ, Wu S, Dai W (2022) Multi-target stochastic configuration network and application. IEEE Trans Arti Intel 4(2):338\u2013348","journal-title":"IEEE Trans Arti Intel"},{"key":"2075_CR43","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.ins.2019.04.055","volume":"495","author":"M Pratama","year":"2019","unstructured":"Pratama M, Wang DH (2019) Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams. Inf Sci 495:150\u2013174","journal-title":"Inf Sci"},{"key":"2075_CR44","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.neucom.2020.01.030","volume":"387","author":"J Xie","year":"2020","unstructured":"Xie J, Zhou P (2020) Robust stochastic configuration network multi-output modeling of molten iron quality in blast furnace ironmaking. Neurocomputing 387:139\u2013149","journal-title":"Neurocomputing"},{"issue":"8","key":"2075_CR45","first-page":"1963","volume":"47","author":"QJ Wang","year":"2021","unstructured":"Wang QJ, Yang CY, Ma XP, Zhang CF, Peng SM (2021) Underground airflow quantity modeling based on SCN. Acta Autom Sin 47(8):1963\u20131975","journal-title":"Acta Autom Sin"},{"key":"2075_CR46","first-page":"3185","volume":"4","author":"P Rai","year":"2012","unstructured":"Rai P, Kumar A, Daume HI (2012) Simultaneously leveraging output and task structures for multiple-output regression. Neural Inf Process Syst 4:3185\u20133193","journal-title":"Neural Inf Process Syst"},{"key":"2075_CR47","unstructured":"Zhang Y, Yeung DY (2010) A convex formulation for learning task relationships in multi-task learning. arXiv preprint arXiv:1203.3536"},{"key":"2075_CR48","unstructured":"Sohn KA, Kim S (2012) Joint estimation of structured sparsity and output structure in multiple-output regression via inverse covariance regularization. In: International Conference on Artificial Intelligence and Statistics, pp 1081-1089"},{"key":"2075_CR49","doi-asserted-by":"crossref","unstructured":"Mastelini SM, Santana EJ, Costa VGTD, Barbon S (2018) Benchmarking multi-target regression methods. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), IEEE, pp 396-401","DOI":"10.1109\/BRACIS.2018.00075"},{"key":"2075_CR50","doi-asserted-by":"crossref","first-page":"85123","DOI":"10.1109\/ACCESS.2019.2920879","volume":"7","author":"M Gheisari","year":"2019","unstructured":"Gheisari M et al (2019) An optimization model for software quality prediction with case study analysis using MATLAB. IEEE Access 7:85123\u201385138","journal-title":"IEEE Access"}],"container-title":["International Journal of Machine Learning and Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-023-02075-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13042-023-02075-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-023-02075-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,19]],"date-time":"2024-07-19T14:54:24Z","timestamp":1721400864000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13042-023-02075-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,29]]},"references-count":50,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2024,7]]}},"alternative-id":["2075"],"URL":"http:\/\/dx.doi.org\/10.1007\/s13042-023-02075-2","relation":{},"ISSN":["1868-8071","1868-808X"],"issn-type":[{"value":"1868-8071","type":"print"},{"value":"1868-808X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,29]]},"assertion":[{"value":"5 December 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 December 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 January 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}