{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T14:57:49Z","timestamp":1725807469752},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,1,29]],"date-time":"2022-01-29T00:00:00Z","timestamp":1643414400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,29]],"date-time":"2022-01-29T00:00:00Z","timestamp":1643414400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61806019"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100012166","name":"National key Research and Development Program","doi-asserted-by":"crossref","award":["2018AAA0101200"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Memetic Comp."],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1007\/s12293-022-00354-z","type":"journal-article","created":{"date-parts":[[2022,1,29]],"date-time":"2022-01-29T03:06:31Z","timestamp":1643425591000},"page":"77-93","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":16,"title":["A particle swarm optimization based multiobjective memetic algorithm for high-dimensional feature selection"],"prefix":"10.1007","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8749-6317","authenticated-orcid":false,"given":"Juanjuan","family":"Luo","sequence":"first","affiliation":[]},{"given":"Dongqing","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Lingling","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Huadong","family":"Ma","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,29]]},"reference":[{"issue":"1","key":"354_CR1","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.compbiolchem.2007.09.005","volume":"32","author":"LY Chuang","year":"2008","unstructured":"Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32(1):29\u201338","journal-title":"Comput Biol Chem"},{"issue":"4","key":"354_CR2","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1109\/TEVC.2013.2281535","volume":"18","author":"K Deb","year":"2014","unstructured":"Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577\u2013601","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"354_CR3","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182\u2013197","journal-title":"IEEE Trans Evol Comput"},{"key":"354_CR4","doi-asserted-by":"crossref","unstructured":"Demir K, Nguyen BH, Xue B, Zhang M (2020) A decomposition based multi-objective evolutionary algorithm with relieff based local search and solution repair mechanism for feature selection. In: 2020 IEEE congress on evolutionary computation (CEC)","DOI":"10.1109\/CEC48606.2020.9185590"},{"key":"354_CR5","doi-asserted-by":"crossref","unstructured":"Emmanouilidis C, Hunter A, MacIntyre, J (2000) A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol\u00a01. IEEE, pp 309\u2013316","DOI":"10.1109\/CEC.2000.870311"},{"key":"354_CR6","unstructured":"Emmanouilidis C, Hunter A, Macintyre J (2002) A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)"},{"key":"354_CR7","doi-asserted-by":"crossref","unstructured":"Hamdani TM, Won JM, Alimi AM, Karray F (2007) Multi-objective feature selection with nsga ii. In: International conference on adaptive and natural computing algorithms, Springer, pp 240\u2013247","DOI":"10.1007\/978-3-540-71618-1_27"},{"key":"354_CR8","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/s12293-021-00326-9","volume":"13","author":"L Han","year":"2021","unstructured":"Han L, Wang H (2021) A random forest assisted evolutionary algorithm using competitive neighborhood search for expensive constrained combinatorial optimization. Memetic Comput 13:19\u201330","journal-title":"Memetic Comput"},{"issue":"4","key":"354_CR9","doi-asserted-by":"publisher","first-page":"601","DOI":"10.1109\/TEVC.2017.2664665","volume":"21","author":"Y Hou","year":"2017","unstructured":"Hou Y, Ong YS, Feng L, Zurada JM (2017) An evolutionary transfer reinforcement learning framework for multiagent systems. IEEE Trans Evol Comput 21(4):601\u2013615. https:\/\/doi.org\/10.1109\/TEVC.2017.2664665","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"354_CR10","doi-asserted-by":"publisher","first-page":"874","DOI":"10.1109\/TCYB.2020.3015756","volume":"51","author":"Y Hu","year":"2021","unstructured":"Hu Y, Zhang Y, Gong D (2021) Multiobjective particle swarm optimization for feature selection with fuzzy cost. IEEE Trans Cybern 51(2):874\u2013888","journal-title":"IEEE Trans Cybern"},{"issue":"4","key":"354_CR11","doi-asserted-by":"publisher","first-page":"1381","DOI":"10.1016\/j.asoc.2007.10.007","volume":"8","author":"CL Huang","year":"2008","unstructured":"Huang CL, Dun JF (2008) A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8(4):1381\u20131391","journal-title":"Appl Soft Comput"},{"issue":"6","key":"354_CR12","doi-asserted-by":"publisher","first-page":"580","DOI":"10.1016\/j.knosys.2010.03.016","volume":"23","author":"SS Kannan","year":"2010","unstructured":"Kannan SS, Ramaraj N (2010) A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm. Knowl-Based Syst 23(6):580\u2013585","journal-title":"Knowl-Based Syst"},{"key":"354_CR13","unstructured":"Kennedy J, Eberhart R (2002) Particle swarm optimization. In: ICNN95-international Conference on Neural Networks"},{"key":"354_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s12293-021-00328-7","volume":"13","author":"H Li","year":"2021","unstructured":"Li H, He F, Chen Y, Pan Y (2021) MLFS-CCDE: multi-objective large-scale feature selection by cooperative coevolutionary differential evolution. Memetic Comput 13:1\u201318","journal-title":"Memetic Comput"},{"key":"354_CR15","doi-asserted-by":"publisher","first-page":"3859","DOI":"10.1109\/TCYB.2018.2849442","volume":"49","author":"J Luo","year":"2019","unstructured":"Luo J, Jiao L, Liu F, Yang S, Ma W (2019) A pareto-based sparse subspace learning framework. IEEE Trans Cybern 49:3859\u20133872","journal-title":"IEEE Trans Cybern"},{"key":"354_CR16","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/j.ins.2020.03.032","volume":"523","author":"AD Li","year":"2020","unstructured":"Li AD, Xue B, Zhang M (2020) Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection. Inf Sci 523:245\u2013265","journal-title":"Inf Sci"},{"issue":"1","key":"354_CR17","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1109\/TIT.1963.1057810","volume":"9","author":"T Marill","year":"1963","unstructured":"Marill T, Green DM (1963) On the effectiveness of receptors in recognition systems. Inf Theory IEEE Trans 9(1):11\u201317","journal-title":"Inf Theory IEEE Trans"},{"key":"354_CR18","doi-asserted-by":"crossref","unstructured":"Moradi P, Gholampour M (2016) A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl Soft Comput 43(C):117\u2013130","DOI":"10.1016\/j.asoc.2016.01.044"},{"issue":"1","key":"354_CR19","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1007\/s12293-015-0153-2","volume":"7","author":"M Nekkaa","year":"2015","unstructured":"Nekkaa M, Boughaci D (2015) A memetic algorithm with support vector machine for feature selection and classification. Memetic Comput 7(1):59\u201373","journal-title":"Memetic Comput"},{"issue":"1","key":"354_CR20","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1109\/TEVC.2019.2913831","volume":"24","author":"BH Nguyen","year":"2019","unstructured":"Nguyen BH, Xue B, Andreae P, Ishibuchi H, Zhang M (2019) Multiple reference points-based decomposition for multiobjective feature selection in classification: static and dynamic mechanisms. IEEE Trans Evol Comput 24(1):170\u2013184","journal-title":"IEEE Trans Evol Comput"},{"key":"354_CR21","doi-asserted-by":"crossref","unstructured":"Nguyen HB, Xue B, Liu I, Andreae P, Zhang M (2015) Gaussian transformation based representation in particle swarm optimisation for feature selection. In: European Conference on the Applications of Evolutionary Computation, Springer, pp 541\u2013553","DOI":"10.1007\/978-3-319-16549-3_44"},{"issue":"2","key":"354_CR22","doi-asserted-by":"publisher","first-page":"793","DOI":"10.1109\/TCYB.2017.2657007","volume":"48","author":"R Shang","year":"2018","unstructured":"Shang R, Wang W, Stolkin R, Jiao L (2018) Non-negative spectral learning and sparse regression-based dual-graph regularized feature selection. IEEE Trans Cybern 48(2):793\u2013806","journal-title":"IEEE Trans Cybern"},{"issue":"1","key":"354_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TKDE.2011.181","volume":"25","author":"Q Song","year":"2011","unstructured":"Song Q, Ni J, Wang G (2011) A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans Knowl Data Eng 25(1):1\u201314","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"354_CR24","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341\u2013359","journal-title":"J Global Optim"},{"issue":"1","key":"354_CR25","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1109\/MCI.2020.3039066","volume":"16","author":"KC Tan","year":"2021","unstructured":"Tan KC, Feng L, Jiang M (2021) Evolutionary transfer optimization\u2014a new frontier in evolutionary computation research. IEEE Comput Intell Mag 16(1):22\u201333. https:\/\/doi.org\/10.1109\/MCI.2020.3039066","journal-title":"IEEE Comput Intell Mag"},{"issue":"1","key":"354_CR26","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1109\/TNNLS.2015.2411615","volume":"27","author":"J Tian","year":"2016","unstructured":"Tian J, Li M, Chen F, Feng N (2016) Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks. IEEE Trans Neural Netw Learn Syst 27(1):47\u201361","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"issue":"2","key":"354_CR27","doi-asserted-by":"publisher","first-page":"380","DOI":"10.1109\/TEVC.2019.2918140","volume":"24","author":"Y Tian","year":"2020","unstructured":"Tian Y, Zhang X, Wang C, Jin Y (2020) An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Trans Evol Comput 24(2):380\u2013393","journal-title":"IEEE Trans Evol Comput"},{"issue":"6","key":"354_CR28","doi-asserted-by":"publisher","first-page":"1733","DOI":"10.1109\/TCYB.2017.2714145","volume":"48","author":"B Tran","year":"2018","unstructured":"Tran B, Xue B, Zhang M (2018) A new representation in PSO for discretization-based feature selection. IEEE Trans Cybern 48(6):1733\u20131746","journal-title":"IEEE Trans Cybern"},{"issue":"3","key":"354_CR29","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1109\/TEVC.2018.2869405","volume":"23","author":"B Tran","year":"2019","unstructured":"Tran B, Xue B, Zhang M (2019) Variable-length particle swarm optimization for feature selection on high-dimensional classification. IEEE Trans Evol Comput 23(3):473\u2013487","journal-title":"IEEE Trans Evol Comput"},{"key":"354_CR30","doi-asserted-by":"publisher","first-page":"113122","DOI":"10.1016\/j.eswa.2019.113122","volume":"145","author":"M Tubishat","year":"2019","unstructured":"Tubishat M, Idris N, Shuib L, Abushariah MAM, Mirjalili S (2019) Improved Salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst Appl 145:113122","journal-title":"Expert Syst Appl"},{"key":"354_CR31","unstructured":"The Memetic Automaton (2019): The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era. Memetic Computation"},{"issue":"2","key":"354_CR32","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1109\/TCYB.2015.2403849","volume":"46","author":"Z Wang","year":"2016","unstructured":"Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2016) Adaptive replacement strategies for moea\/d. IEEE Trans Cybern 46(2):474\u2013486","journal-title":"IEEE Trans Cybern"},{"issue":"9","key":"354_CR33","doi-asserted-by":"publisher","first-page":"1100","DOI":"10.1109\/T-C.1971.223410","volume":"20","author":"AW Whitney","year":"1971","unstructured":"Whitney AW (1971) A direct method of nonparametric measurement selection. IEEE Trans Comput 20(9):1100\u20131103","journal-title":"IEEE Trans Comput"},{"key":"354_CR34","unstructured":"Wu X, Xu X, Liu J, Wang H, Nie F (2020) Supervised feature selection with orthogonal regression and feature weighting. IEEE Trans Neural Netw Learn Syst PP(99):2\u20138"},{"issue":"02","key":"354_CR35","doi-asserted-by":"publisher","first-page":"1450009","DOI":"10.1142\/S1469026814500096","volume":"13","author":"B Xue","year":"2014","unstructured":"Xue B, Cervante L, Shang L, Browne WN, Zhang M (2014) Binary PSO and rough set theory for feature selection: a multi-objective filter based approach. Int J Comput Intell Appl 13(02):1450009","journal-title":"Int J Comput Intell Appl"},{"key":"354_CR36","doi-asserted-by":"crossref","unstructured":"Xue B, Zhang M, Browne WN (2012) Multi-objective particle swarm optimisation (pso) for feature selection. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp 81\u201388","DOI":"10.1145\/2330163.2330175"},{"key":"354_CR37","doi-asserted-by":"crossref","unstructured":"Xue B, Zhang M, Browne WN (2012) New fitness functions in binary particle swarm optimisation for feature selection. In: 2012 IEEE congress on evolutionary computation, pp 1\u20138. IEEE","DOI":"10.1145\/2330163.2330175"},{"issue":"6","key":"354_CR38","doi-asserted-by":"publisher","first-page":"1656","DOI":"10.1109\/TSMCB.2012.2227469","volume":"43","author":"B Xue","year":"2012","unstructured":"Xue B, Zhang M, Browne WN (2012) Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans Cybern 43(6):1656\u20131671","journal-title":"IEEE Trans Cybern"},{"key":"354_CR39","doi-asserted-by":"crossref","unstructured":"Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput J 18:261\u2013276","DOI":"10.1016\/j.asoc.2013.09.018"},{"issue":"4","key":"354_CR40","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1109\/TEVC.2015.2504420","volume":"20","author":"B Xue","year":"2016","unstructured":"Xue B, Zhang M, Browne WN, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606\u2013626","journal-title":"IEEE Trans Evol Comput"},{"issue":"5","key":"354_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3340848","volume":"13","author":"Y Xue","year":"2019","unstructured":"Xue Y, Xue B, Zhang M (2019) Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans Knowl Discov Data (TKDD) 13(5):1\u201327","journal-title":"ACM Trans Knowl Discov Data (TKDD)"},{"issue":"6","key":"354_CR42","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2008","unstructured":"Zhang Q, Hui L (2008) Moea\/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712\u2013731","journal-title":"IEEE Trans Evolut Comput"},{"key":"354_CR43","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/j.ins.2019.08.040","volume":"507","author":"Y Zhang","year":"2020","unstructured":"Zhang Y, Dw Gong, Xz Gao, Tian T, Xy Sun (2020) Binary differential evolution with self-learning for multi-objective feature selection. Inf Sci 507:67\u201385","journal-title":"Inf Sci"},{"key":"354_CR44","doi-asserted-by":"publisher","first-page":"100770","DOI":"10.1016\/j.swevo.2020.100770","volume":"60","author":"Y Zhou","year":"2021","unstructured":"Zhou Y, Kang J, Kwong S, Wang X, Zhang Q (2021) An evolutionary multi-objective optimization framework of discretization-based feature selection for classification. Swarm Evolut Comput 60:100770","journal-title":"Swarm Evolut Comput"},{"key":"354_CR45","unstructured":"Zhu L, Cao L, Yang J (2012) Multiobjective evolutionary algorithm-based soft subspace clustering. In: 2012 IEEE Congress on evolutionary computation, IEEE, pp 1\u20138"},{"issue":"1","key":"354_CR46","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1109\/TSMCB.2006.883267","volume":"37","author":"Z Zhu","year":"2007","unstructured":"Zhu Z, Ong YS, Dash M (2007) Wrappercfilter feature selection algorithm using a memetic framework. IEEE Trans Syst Man Cybern Part B (Cybernetics) 37(1):70\u201376","journal-title":"IEEE Trans Syst Man Cybern Part B (Cybernetics)"},{"key":"354_CR47","unstructured":"Zitzler E, Laumanns M, Thiele L (2001) Spea2: Improving the strength pareto evolutionary algorithm. Technical Report Gloriastrasse"}],"container-title":["Memetic Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12293-022-00354-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12293-022-00354-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12293-022-00354-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,10]],"date-time":"2022-03-10T00:05:43Z","timestamp":1646870743000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12293-022-00354-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,29]]},"references-count":47,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2022,3]]}},"alternative-id":["354"],"URL":"http:\/\/dx.doi.org\/10.1007\/s12293-022-00354-z","relation":{},"ISSN":["1865-9284","1865-9292"],"issn-type":[{"value":"1865-9284","type":"print"},{"value":"1865-9292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,29]]},"assertion":[{"value":"15 March 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 January 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}