iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S12021-015-9292-3
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T11:07:38Z","timestamp":1725534458359},"reference-count":68,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2016,1,23]],"date-time":"2016-01-23T00:00:00Z","timestamp":1453507200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100006318","name":"Universidad Carlos III de Madrid","doi-asserted-by":"crossref","award":["CONEX"],"id":[{"id":"10.13039\/501100006318","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neuroinform"],"published-print":{"date-parts":[[2016,7]]},"DOI":"10.1007\/s12021-015-9292-3","type":"journal-article","created":{"date-parts":[[2016,1,23]],"date-time":"2016-01-23T07:15:54Z","timestamp":1453533354000},"page":"279-296","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":73,"title":["Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia"],"prefix":"10.1007","volume":"14","author":[{"name":"Alzheimer\u2019s Disease Neuroimaging Initiative","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1048-5860","authenticated-orcid":false,"given":"Jussi","family":"Tohka","sequence":"first","affiliation":[]},{"given":"Elaheh","family":"Moradi","sequence":"additional","affiliation":[]},{"given":"Heikki","family":"Huttunen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,1,23]]},"reference":[{"issue":"3","key":"9292_CR1","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1016\/j.neuroimage.2005.02.018","volume":"26","author":"J Ashburner","year":"2005","unstructured":"Ashburner, J., & Friston, K. (2005). Unified segmentation. Neuroimage, 26(3), 839\u2013851.","journal-title":"Neuroimage"},{"key":"9292_CR2","doi-asserted-by":"crossref","unstructured":"Baldassarre, L., Mourao-Miranda, J., & Pontil, M. (2012). Structured sparsity models for brain decoding from fmri data. In Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on (pp. 5\u20138): IEEE.","DOI":"10.1109\/PRNI.2012.31"},{"key":"9292_CR3","doi-asserted-by":"crossref","unstructured":"Bouckaert, R.R., & Frank, E. (2004). Evaluating the replicability of significance tests for comparing learning algorithms. In Advances in knowledge discovery and data mining (pp. 3\u201312): Springer.","DOI":"10.1007\/978-3-540-24775-3_3"},{"key":"9292_CR4","doi-asserted-by":"crossref","first-page":"562","DOI":"10.1016\/j.neuroimage.2015.01.048","volume":"111","author":"EE Bron","year":"2015","unstructured":"Bron, E.E., Smits, M., van der Flier, W.M., Vrenken, H., Barkhof, F., Scheltens, P., Papma, J.M., Steketee, R.M., Orellana, C.M., Meijboom, R., & et al. (2015). Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural mri: The caddementia challenge. NeuroImage, 111, 562\u2013579.","journal-title":"NeuroImage"},{"issue":"1","key":"9292_CR5","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.neuroimage.2008.08.020","volume":"44","author":"MK Carroll","year":"2009","unstructured":"Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., & Rao, A.R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44(1), 112\u2013122.","journal-title":"NeuroImage"},{"key":"9292_CR6","doi-asserted-by":"crossref","unstructured":"Casanova, R., Whitlow, C.T., Wagner, B., Williamson, J., Shumaker, S.A., Maldjian, J.A., & Espeland, M.A. (2011b). High dimensional classification of structural mri alzheimer\u2019s disease data based on large scale regularization. Frontiers in neuroinformatics 5.","DOI":"10.3389\/fninf.2011.00022"},{"issue":"3","key":"9292_CR7","first-page":"27","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang, C.C., & Lin, C.J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.","journal-title":"ACM Transactions on Intelligent Systems and Technology (TIST)"},{"issue":"1","key":"9292_CR8","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.neuroimage.2011.11.066","volume":"60","author":"C Chu","year":"2012","unstructured":"Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., Initiative, A.D.N., & et al. (2012). Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage, 60(1), 59\u201370.","journal-title":"Neuroimage"},{"issue":"12","key":"9292_CR9","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TMI.2005.857652","volume":"24","author":"MB Cuadra","year":"2005","unstructured":"Cuadra, M.B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J.P. (2005). Comparison and validation of tissue modelization and statistical classification methods in t1-weighted mr brain images. IEEE Transactions on Medical Imaging, 24(12), 1548\u20131565.","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"2","key":"9292_CR10","doi-asserted-by":"crossref","first-page":"766","DOI":"10.1016\/j.neuroimage.2010.06.013","volume":"56","author":"R Cuingnet","year":"2011","unstructured":"Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Leh\u00e9ricy, S, Habert, M.O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with alzheimer\u2019s disease from structural mri: a comparison of ten methods using the adni database. Neuroimage, 56(2), 766\u2013781.","journal-title":"Neuroimage"},{"issue":"3","key":"9292_CR11","doi-asserted-by":"crossref","first-page":"682","DOI":"10.1109\/TPAMI.2012.142","volume":"35","author":"R Cuingnet","year":"2013","unstructured":"Cuingnet, R., Glaun\u00e8s, J.A., Chupin, M., Benali, H., & Colliot, O. (2013). Spatial and anatomical regularization of svm: a general framework for neuroimaging data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 682\u2013696.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"1","key":"9292_CR12","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1109\/TSP.2010.2084573","volume":"59","author":"LA Dalton","year":"2011","unstructured":"Dalton, L.A., & Dougherty, E.R. (2011). Bayesian minimum mean-square error estimation for classification error\u2014part II: The Bayesian MMSE error estimator for linear classification of Gaussian distributions. IEEE Trans Signal Process, 59(1), 130\u2013144.","journal-title":"IEEE Trans Signal Process"},{"key":"9292_CR13","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.neuroimage.2014.04.037","volume":"97","author":"T Davis","year":"2014","unstructured":"Davis, T., LaRocque, K.F., Mumford, J.A., Norman, K.A., Wagner, A.D., & Poldrack, R.A. (2014). What do differences between multi-voxel and univariate analysis mean? how subject-, voxel-, and trial-level variance impact fmri analysis. NeuroImage, 97, 271\u2013283.","journal-title":"NeuroImage"},{"issue":"3","key":"9292_CR14","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","volume":"26","author":"LR Dice","year":"1945","unstructured":"Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297\u2013302.","journal-title":"Ecology"},{"issue":"7","key":"9292_CR15","doi-asserted-by":"crossref","first-page":"1895","DOI":"10.1162\/089976698300017197","volume":"10","author":"TG Dietterich","year":"1998","unstructured":"Dietterich, T.G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural computation, 10(7), 1895\u20131923.","journal-title":"Neural computation"},{"issue":"1","key":"9292_CR16","doi-asserted-by":"crossref","first-page":"53","DOI":"10.2174\/157489310790596385","volume":"5","author":"ER Dougherty","year":"2010","unstructured":"Dougherty, E.R., Sima, C., Hanczar, B., & Braga-Neto, U.M. (2010). Performance of error estimators for classification. Current Bioinformatics, 5(1), 53.","journal-title":"Current Bioinformatics"},{"key":"9292_CR17","doi-asserted-by":"crossref","unstructured":"Dubuisson, M.P., & Jain, A.K. (1994). A modified hausdorff distance for object matching. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on, (Vol. 1 pp. 566\u2013568): IEEE.","DOI":"10.1109\/ICPR.1994.576361"},{"issue":"7","key":"9292_CR18","doi-asserted-by":"crossref","first-page":"e22","DOI":"10.1371\/journal.pone.0022193","volume":"6","author":"J Dukart","year":"2011","unstructured":"Dukart, J., Schroeter, M.L., & Mueller, K. (2011). Age correction in dementia\u2013matching to a healthy brain. PloS one, 6(7), e22\u2013193.","journal-title":"PloS one"},{"key":"9292_CR19","doi-asserted-by":"crossref","first-page":"718","DOI":"10.1016\/j.nicl.2014.02.002","volume":"4","author":"JB Fiot","year":"2014","unstructured":"Fiot, J.B., Raguet, H., Risser, L., Cohen, L.D., Fripp, J., & Vialard, F.X. (2014). Longitudinal deformation models, spatial regularizations and learning strategies to quantify alzheimer\u2019s disease progression. NeuroImage: Clinical, 4, 718\u2013729.","journal-title":"NeuroImage: Clinical"},{"issue":"19","key":"9292_CR20","doi-asserted-by":"crossref","first-page":"8237","DOI":"10.1523\/JNEUROSCI.5506-12.2013","volume":"33","author":"AM Fjell","year":"2013","unstructured":"Fjell, A.M., McEvoy, L., Holland, D., Dale, A.M., Walhovd, K.B., & et al. (2013). Brain changes in older adults at very low risk for alzheimer\u2019s disease. The Journal of Neuroscience, 33(19), 8237\u20138242.","journal-title":"The Journal of Neuroscience"},{"issue":"3","key":"9292_CR21","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1016\/j.neuroimage.2010.01.005","volume":"50","author":"K Franke","year":"2010","unstructured":"Franke, K., Ziegler, G., Kl\u00f6ppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects from t1-weighted mri scans using kernel methods: Exploring the influence of various parameters. Neuroimage, 50(3), 883\u2013892.","journal-title":"Neuroimage"},{"key":"9292_CR22","doi-asserted-by":"crossref","unstructured":"Franke, K., Ristow, M., Gaser, C., Initiative, A.D.N., & et al. (2014). Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Frontiers in Aging Neuroscience, 6(94).","DOI":"10.3389\/fnagi.2014.00094"},{"issue":"1","key":"9292_CR23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v033.i01","volume":"33","author":"J Friedman","year":"2010","unstructured":"Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1\u201322.","journal-title":"Journal of Statistical Software"},{"key":"9292_CR24","doi-asserted-by":"crossref","first-page":"S121","DOI":"10.1016\/S1053-8119(09)71151-6","volume":"47","author":"C Gaser","year":"2009","unstructured":"Gaser, C. (2009). Partial volume segmentation with adaptive maximum a posteriori (map) approach. NeuroImage, 47, S121.","journal-title":"NeuroImage"},{"issue":"6","key":"9292_CR25","doi-asserted-by":"crossref","first-page":"e67","DOI":"10.1371\/journal.pone.0067346","volume":"8","author":"C Gaser","year":"2013","unstructured":"Gaser, C., Franke, K., Kl\u00f6ppel, S., Koutsouleris, N., Sauer H, & Initiative, A.D.N. (2013). Brainage in mild cognitive impaired patients: Predicting the conversion to alzheimer\u2019s disease. PloS one, 8(6), e67\u2013346.","journal-title":"PloS one"},{"issue":"4","key":"9292_CR26","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1006\/nimg.2001.1037","volume":"15","author":"CR Genovese","year":"2002","unstructured":"Genovese, C.R., Lazar, N.A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870\u2013878.","journal-title":"Neuroimage"},{"issue":"3","key":"9292_CR27","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/0031-3203(78)90029-8","volume":"10","author":"N Glick","year":"1978","unstructured":"Glick, N. (1978). Additive estimators for probabilities of correct classification. Pattern Recognition, 10(3), 211\u2013222.","journal-title":"Pattern Recognition"},{"issue":"6","key":"9292_CR28","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1109\/TNSRE.2008.926701","volume":"16","author":"L Grosenick","year":"2008","unstructured":"Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classifiers for fmri improve prediction of purchases. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 539\u2013548.","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"9292_CR29","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.neuroimage.2012.12.062","volume":"72","author":"L Grosenick","year":"2013","unstructured":"Grosenick, L., Klingenberg, B., Katovich, K.B.K., & Taylor, J.E. (2013). Interpretable whole-brain prediction analysis with graphnet. NeuroImage, 72, 304\u2013321.","journal-title":"NeuroImage"},{"key":"9292_CR30","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157\u20131182.","journal-title":"The Journal of Machine Learning Research"},{"key":"9292_CR31","first-page":"1391","volume":"5","author":"T Hastie","year":"2004","unstructured":"Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). The entire regularization path for the support vector machine. The Journal of Machine Learning Research, 5, 1391\u20131415.","journal-title":"The Journal of Machine Learning Research"},{"key":"9292_CR32","doi-asserted-by":"crossref","unstructured":"Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning, 2nd: Springer series in statistics.","DOI":"10.1007\/978-0-387-84858-7"},{"key":"9292_CR33","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.neuroimage.2013.10.067","volume":"87","author":"S Haufe","year":"2014","unstructured":"Haufe, S., Meinecke, F., G\u00f6rgen, K., D\u00e4hne, S., Haynes, J.D., Blankertz, B., & Bie\u00dfmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 96\u2013110.","journal-title":"Neuroimage"},{"key":"9292_CR34","doi-asserted-by":"crossref","first-page":"3739","DOI":"10.1016\/j.patcog.2015.05.005","volume":"48","author":"H Huttunen","year":"2015","unstructured":"Huttunen, H., & Tohka, J. (2015). Model selection for linear classifiers using bayesian error estimation. Pattern Recognition, 48, 3739\u20133748.","journal-title":"Pattern Recognition"},{"key":"9292_CR35","first-page":"42","volume-title":"Mind reading with multinomial logistic regression: Strategies for feature selection","author":"H Huttunen","year":"2012","unstructured":"Huttunen, H., Manninen, T., & Tohka, J. (2012). Mind reading with multinomial logistic regression: Strategies for feature selection, (pp. 42\u201349). Helsinki, Finland: Federated Computer Science Event."},{"issue":"6","key":"9292_CR36","doi-asserted-by":"crossref","first-page":"1311","DOI":"10.1007\/s00138-012-0464-y","volume":"24","author":"H Huttunen","year":"2013","unstructured":"Huttunen, H., Manninen, T., Kauppi, J.P., & Tohka, J. (2013a). Mind reading with regularized multinomial logistic regression. Machine Vision and Applications, 24(6), 1311\u20131325.","journal-title":"Machine Vision and Applications"},{"key":"9292_CR37","doi-asserted-by":"crossref","unstructured":"Huttunen, H., Manninen, T., & Tohka, J. (2013b). Bayesian error estimation and model selection in sparse logistic regression. In 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1\u20136): IEEE.","DOI":"10.1109\/MLSP.2013.6661987"},{"issue":"2","key":"9292_CR38","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.artmed.2004.01.007","volume":"31","author":"I Inza","year":"2004","unstructured":"Inza, I., Larra\u00f1aga, P., Blanco, R., & Cerrolaza, A.J. (2004). Filter versus wrapper gene selection approaches in dna microarray domains. Artificial Intelligence in Medicine, 31(2), 91\u2013103.","journal-title":"Artificial Intelligence in Medicine"},{"issue":"4","key":"9292_CR39","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1016\/j.neuropsychologia.2011.11.007","volume":"50","author":"K Jimura","year":"2012","unstructured":"Jimura, K., & Poldrack, R.A. (2012). Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 50(4), 544\u2013552.","journal-title":"Neuropsychologia"},{"key":"9292_CR40","unstructured":"Kenny, D. (1987). Statistics for the Social and Behavioral Sciences: Little Brown."},{"key":"9292_CR41","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1016\/j.neuroimage.2013.07.050","volume":"84","author":"WT Kerr","year":"2014","unstructured":"Kerr, W.T., Douglas, P.K., Anderson, A., & Cohen, M.S. (2014). The utility of data-driven feature selection: Re: Chu et al. 2012. NeuroImage, 84, 1107\u20131110.","journal-title":"NeuroImage"},{"key":"9292_CR42","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.neuroimage.2015.02.046","volume":"111","author":"BS Khundrakpam","year":"2015","unstructured":"Khundrakpam, B.S., Tohka, J., & Evans, A.C. (2015). Prediction of brain maturity based on cortical thickness at different spatial resolutions. NeuroImage, 111, 350\u2013359.","journal-title":"NeuroImage"},{"key":"9292_CR43","doi-asserted-by":"crossref","first-page":"939","DOI":"10.3233\/JAD-150334","volume":"47","author":"S Kl\u00f6ppel","year":"2015","unstructured":"Kl\u00f6ppel, S., Peter, J., Ludl, A., Pilatus, A., Maier, S., Mader, I., Heimbach, B., Frings, L., Egger, K., Dukart, J., & et al. (2015). Applying automated mr-based diagnostic methods to the memory clinic: A prospective study. Journal of Alzheimer\u2019s Disease, 47, 939\u2013954.","journal-title":"Journal of Alzheimer\u2019s Disease"},{"key":"9292_CR44","unstructured":"Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence (IJCAI95), (Vol. 14 pp. 1137\u20131145)."},{"issue":"2","key":"9292_CR45","doi-asserted-by":"crossref","first-page":"538","DOI":"10.1006\/nimg.2002.1107","volume":"16","author":"NA Lazar","year":"2002","unstructured":"Lazar, N.A., Luna, B., Sweeney, J.A., & Eddy, W.F. (2002). Combining brains: a survey of methods for statistical pooling of information. Neuroimage, 16(2), 538\u2013550.","journal-title":"Neuroimage"},{"issue":"4","key":"9292_CR46","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1111\/j.1467-9868.2010.00740.x","volume":"72","author":"N Meinshausen","year":"2010","unstructured":"Meinshausen, N., & B\u00fchlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417\u2013473.","journal-title":"Journal of the Royal Statistical Society: Series B (Statistical Methodology)"},{"issue":"7","key":"9292_CR47","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1109\/TMI.2011.2113378","volume":"30","author":"V Michel","year":"2011","unstructured":"Michel, V., Gramfort, A., Varoquaux, G., Eger, E., & Thirion, B. (2011). Total variation regularization for fmri-based prediction of behavior. IEEE Transactions on Medical Imaging, 30(7), 1328\u20131340.","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"9292_CR48","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neuroimage.2014.10.025","volume":"104","author":"H Mohr","year":"2015","unstructured":"Mohr, H., Wolfensteller, U., Frimmel, S., & Ruge, H. (2015). Sparse regularization techniques provide novel insights into outcome integration processes. NeuroImage, 104, 163\u2013176.","journal-title":"NeuroImage"},{"key":"9292_CR49","doi-asserted-by":"crossref","unstructured":"Moradi, E., Gaser, C., & Tohka, J. (2014). Semi-supervised learning in mci-to-ad conversion prediction - when is unlabeled data useful IEEE Pattern Recognition in Neuro Imaging, 121\u2013124.","DOI":"10.1109\/PRNI.2014.6858535"},{"key":"9292_CR50","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1016\/j.neuroimage.2014.10.002","volume":"104","author":"E Moradi","year":"2015","unstructured":"Moradi, E., Pepe, A., Gaser, C., Huttunen, H., & Tohka, J. (2015). Machine learning framework for early mri-based alzheimer\u2019s conversion prediction in mci subjects. NeuroImage, 104, 398\u2013412.","journal-title":"NeuroImage"},{"issue":"2","key":"9292_CR51","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1007\/s12021-013-9204-3","volume":"12","author":"B Mwangi","year":"2014","unstructured":"Mwangi, B., Tian, T.S., & Soares, J.C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229\u2013244.","journal-title":"Neuroinformatics"},{"issue":"3","key":"9292_CR52","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1023\/A:1024068626366","volume":"52","author":"C Nadeau","year":"2003","unstructured":"Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52(3), 239\u2013281.","journal-title":"Machine Learning"},{"issue":"8","key":"9292_CR53","first-page":"e41","volume":"7","author":"J Pajula","year":"2012","unstructured":"Pajula, J., Kauppi, J.P., & Tohka, J. (2012). Inter-subject correlation in fmri: method validation against stimulus-model based analysis. PloS one, 7(8), e41\u2013196.","journal-title":"PloS one"},{"issue":"3","key":"9292_CR54","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1212\/WNL.0b013e3181cb3e25","volume":"74","author":"R Petersen","year":"2010","unstructured":"Petersen, R., Aisen, P., Beckett, L., Donohue, M., Gamst, A., Harvey, D., Jack, C., Jagust, W., Shaw, L., Toga, A., & et al. (2010). Alzheimer\u2019s disease neuroimaging initiative (adni) clinical characterization. Neurology, 74(3), 201\u2013209.","journal-title":"Neurology"},{"issue":"2","key":"9292_CR55","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1109\/42.563663","volume":"16","author":"JC Rajapakse","year":"1997","unstructured":"Rajapakse, J.C., Giedd, J.N., & Rapoport (1997). Statistical approach to segmentation of single-channel cerebral mr images. IEEE Transactions on Medical Imaging, 16(2), 176\u2013186.","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"6","key":"9292_CR56","doi-asserted-by":"crossref","first-page":"2085","DOI":"10.1016\/j.patcog.2011.09.011","volume":"45","author":"PM Rasmussen","year":"2012","unstructured":"Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., & Strother, S.C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 45(6), 2085\u20132100.","journal-title":"Pattern Recognition"},{"key":"9292_CR57","doi-asserted-by":"crossref","unstructured":"Retico, A, Bosco, P, Cerello, P, Fiorina, E, Chincarini, A, & Fantacci, ME. (2015). Predictive models based on support vector machines: Whole-brain versus regional analysis of structural mri in the alzheimer\u2019s disease: Journal of Neuroimaging (in press).","DOI":"10.1111\/jon.12163"},{"issue":"1","key":"9292_CR58","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1109\/TMI.2013.2281398","volume":"33","author":"JM Rondina","year":"2014","unstructured":"Rondina, J.M., Hahn, T., De Oliveira, L., Marquand, A.F., Dresler, T., Leitner, T., Fallgatter, A.J., Shawe-Taylor, J., & Mourao-Miranda, J. (2014). Scors\u2013a method based on stability for feature selection and mapping in neuroimaging. IEEE Transactions on Medical Imaging, 33(1), 85\u201398.","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"2","key":"9292_CR59","doi-asserted-by":"crossref","first-page":"752","DOI":"10.1016\/j.neuroimage.2010.02.040","volume":"51","author":"S Ryali","year":"2010","unstructured":"Ryali, S., Supekar, K., Abrams, D.A., & Menon, V. (2010). Sparse logistic regression for whole-brain classification of fmri data. NeuroImage, 51(2), 752\u2013764.","journal-title":"NeuroImage"},{"key":"9292_CR60","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1007\/s12021-014-9238-1","volume":"13","author":"MR Sabuncu","year":"2015","unstructured":"Sabuncu, M.R., Konukoglu, E., Initiative, A.D.N., & et al. (2015). Clinical prediction from structural brain mri scans: A large-scale empirical study. Neuroinformatics, 13, 31\u201346.","journal-title":"Neuroinformatics"},{"issue":"4","key":"9292_CR61","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1006\/nimg.2001.1034","volume":"15","author":"SC Strother","year":"2002","unstructured":"Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., & Rottenberg, D. (2002). The quantitative evaluation of functional neuroimaging experiments: the npairs data analysis framework. NeuroImage, 15(4), 747\u2013771.","journal-title":"NeuroImage"},{"key":"9292_CR62","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society Series B, 58, 267\u2013288.","journal-title":"Journal of the Royal Statistical Society Series B"},{"issue":"1","key":"9292_CR63","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.neuroimage.2004.05.007","volume":"23","author":"J Tohka","year":"2004","unstructured":"Tohka, J., Zijdenbos, A., & Evans, A. (2004). Fast and robust parameter estimation for statistical partial volume models in brain mri. Neuroimage, 23(1), 84\u201397.","journal-title":"Neuroimage"},{"issue":"1","key":"9292_CR64","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.neuroimage.2009.11.064","volume":"50","author":"MA Van Gerven","year":"2010","unstructured":"Van Gerven, M.A., Cseke, B., De Lange, F.P., & Heskes, T. (2010). Efficient bayesian multivariate fmri analysis using a sparsifying spatio-temporal prior. NeuroImage, 50(1), 150\u2013161.","journal-title":"NeuroImage"},{"issue":"1","key":"9292_CR65","doi-asserted-by":"crossref","first-page":"S1","DOI":"10.1016\/j.jalz.2011.09.172","volume":"8","author":"M Weiner","year":"2012","unstructured":"Weiner, M., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., & et al. (2012). The alzheimer\u2019s disease neuroimaging initiative: A review of paper published since its inception. Alzheimers & Dementia, 8(1), S1\u2013S68.","journal-title":"Alzheimers & Dementia"},{"issue":"46","key":"9292_CR66","first-page":"1","volume":"12","author":"J Ye","year":"2012","unstructured":"Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., Dibernardo, A., & Narayan, V. (2012). Sparse learning and stability selection for predicting mci to ad conversion using baseline adni data. BMC Neurology, 12(46), 1\u201312.","journal-title":"BMC Neurology"},{"issue":"4","key":"9292_CR67","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1109\/42.363096","volume":"13","author":"AP Zijdenbos","year":"1994","unstructured":"Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., & Palmer, A.C. (1994). Morphometric analysis of white matter lesions in mr images: method and validation. IEEE Transactions on Medical Imaging, 13(4), 716\u2013724.","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"2","key":"9292_CR68","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/j.1467-9868.2005.00503.x","volume":"67","author":"H Zou","year":"2005","unstructured":"Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67(2), 301\u2013320.","journal-title":"Journal of the Royal Statistical Society: Series B"}],"container-title":["Neuroinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-015-9292-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s12021-015-9292-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12021-015-9292-3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T23:08:44Z","timestamp":1718320124000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s12021-015-9292-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,1,23]]},"references-count":68,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2016,7]]}},"alternative-id":["9292"],"URL":"http:\/\/dx.doi.org\/10.1007\/s12021-015-9292-3","relation":{},"ISSN":["1539-2791","1559-0089"],"issn-type":[{"type":"print","value":"1539-2791"},{"type":"electronic","value":"1559-0089"}],"subject":[],"published":{"date-parts":[[2016,1,23]]}}}