iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S11227-020-03161-W
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T11:55:31Z","timestamp":1726142131162},"reference-count":65,"publisher":"Springer Science and Business Media LLC","issue":"11","license":[{"start":{"date-parts":[[2020,1,20]],"date-time":"2020-01-20T00:00:00Z","timestamp":1579478400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,20]],"date-time":"2020-01-20T00:00:00Z","timestamp":1579478400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Supercomput"],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1007\/s11227-020-03161-w","type":"journal-article","created":{"date-parts":[[2020,1,20]],"date-time":"2020-01-20T07:02:28Z","timestamp":1579503748000},"page":"8691-8728","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":18,"title":["Incorporating evolutionary computation for securing wireless network against cyberthreats"],"prefix":"10.1007","volume":"76","author":[{"given":"Shubhra","family":"Dwivedi","sequence":"first","affiliation":[]},{"given":"Manu","family":"Vardhan","sequence":"additional","affiliation":[]},{"given":"Sarsij","family":"Tripathi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,20]]},"reference":[{"key":"3161_CR1","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.paid.2019.01.024","volume":"141","author":"V Balakrishnan","year":"2019","unstructured":"Balakrishnan V, Khan S, Fernandez T, Arabnia HR (2019) Cyberbullying detection on twitter using big five and dark triad features. Person Individ Differ 141:252\u2013257","journal-title":"Person Individ Differ"},{"issue":"3","key":"3161_CR2","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.1007\/s11227-016-1855-z","volume":"73","author":"K Kim","year":"2017","unstructured":"Kim K, Kim I, Lim J (2017) National cyber security enhancement scheme for intelligent surveillance capacity with public iot environment. J Supercomput 73(3):1140\u20131151","journal-title":"J Supercomput"},{"issue":"11","key":"3161_CR3","doi-asserted-by":"crossref","first-page":"6184","DOI":"10.1007\/s11227-018-2532-1","volume":"74","author":"MR Khosravi","year":"2018","unstructured":"Khosravi MR, Basri H, Rostami H, Samadi S (2018) Distributed random cooperation for vbf-based routing in high-speed dense underwater acoustic sensor networks. J Supercomput 74(11):6184\u20136200","journal-title":"J Supercomput"},{"key":"3161_CR4","doi-asserted-by":"publisher","DOI":"10.1007\/s12065-019-00293-8","author":"S Dwivedi","year":"2019","unstructured":"Dwivedi S, Vardhan M, Tripathi S, Shukla AK (2019) Implementation of adaptive scheme in evolutionary technique for anomaly-based intrusion detection. Evolut Intell. https:\/\/doi.org\/10.1007\/s12065-019-00293-8","journal-title":"Evolut Intell"},{"key":"3161_CR5","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.future.2018.07.023","volume":"93","author":"J Zhang","year":"2019","unstructured":"Zhang J, Gardner R, Vukotic I (2019) Anomaly detection in wide area network meshes using two machine learning algorithms. Future Gen Comput Syst 93:418\u2013426","journal-title":"Future Gen Comput Syst"},{"issue":"4","key":"3161_CR6","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1016\/S1389-1286(00)00136-5","volume":"34","author":"EH Spafford","year":"2000","unstructured":"Spafford EH, Zamboni D (2000) Intrusion detection using autonomous agents. Comput Netw 34(4):547\u2013570","journal-title":"Comput Netw"},{"key":"3161_CR7","doi-asserted-by":"crossref","first-page":"100199","DOI":"10.1016\/j.cosrev.2019.100199","volume":"34","author":"N Pitropakis","year":"2019","unstructured":"Pitropakis N, Panaousis E, Giannetsos T, Anastasiadis E, Loukas G (2019) A taxonomy and survey of attacks against machine learning. Comput Sci Rev 34:100199","journal-title":"Comput Sci Rev"},{"key":"3161_CR8","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.cose.2017.06.005","volume":"70","author":"C Khammassi","year":"2017","unstructured":"Khammassi C, Krichen S (2017) A ga-lr wrapper approach for feature selection in network intrusion detection. Comput Secur 70:255\u2013277","journal-title":"Comput Secur"},{"key":"3161_CR9","doi-asserted-by":"crossref","unstructured":"Ambusaidi MA, He X, Nanda P (2015) Unsupervised feature selection method for intrusion detection system. In: IEEE Trustcom\/BigDataSE\/ISPA, vol 1. IEEE, pp 295\u2013301","DOI":"10.1109\/Trustcom.2015.387"},{"issue":"1","key":"3161_CR10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2009.06.019","volume":"10","author":"SX Wu","year":"2010","unstructured":"Wu SX, Banzhaf W (2010) The use of computational intelligence in intrusion detection systems: a review. Appl Soft Comput 10(1):1\u201335","journal-title":"Appl Soft Comput"},{"key":"3161_CR11","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.cose.2016.11.004","volume":"65","author":"AA Aburomman","year":"2017","unstructured":"Aburomman AA, Reaz MBI (2017) A survey of intrusion detection systems based on ensemble and hybrid classifiers. Comput Secur 65:135\u2013152","journal-title":"Comput Secur"},{"issue":"6","key":"3161_CR12","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1049\/iet-ifs.2014.0353","volume":"9","author":"W Wang","year":"2015","unstructured":"Wang W, He Y, Liu J, Gombault S (2015) Constructing important features from massive network traffic for lightweight intrusion detection. IET Inf Secur 9(6):374\u2013379","journal-title":"IET Inf Secur"},{"issue":"3","key":"3161_CR13","doi-asserted-by":"crossref","first-page":"1583","DOI":"10.3233\/JIFS-169453","volume":"34","author":"AK Shukla","year":"2018","unstructured":"Shukla AK, Singh P, Vardhan M (2018) Neighbour teaching learning based optimization for global optimization problems. J Intell Fuzzy Syst 34(3):1583\u20131594","journal-title":"J Intell Fuzzy Syst"},{"issue":"3","key":"3161_CR14","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1145\/2480741.2480752","volume":"45","author":"M \u010crepin\u0161ek","year":"2013","unstructured":"\u010crepin\u0161ek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45(3):35","journal-title":"ACM Comput Surv (CSUR)"},{"key":"3161_CR15","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.cose.2019.05.022","volume":"86","author":"J Gu","year":"2019","unstructured":"Gu J, Wang L, Wang H, Wang S (2019) A novel approach to intrusion detection using SVM ensemble with feature augmentation. Comput Secur 86:53\u201362","journal-title":"Comput Secur"},{"key":"3161_CR16","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.comnet.2018.02.028","volume":"136","author":"V Hajisalem","year":"2018","unstructured":"Hajisalem V, Babaie S (2018) A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection. Comput Netw 136:37\u201350","journal-title":"Comput Netw"},{"key":"3161_CR17","doi-asserted-by":"crossref","DOI":"10.1002\/9780470496916","volume-title":"Metaheuristics: from design to implementation","author":"E-G Talbi","year":"2009","unstructured":"Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York"},{"issue":"3","key":"3161_CR18","doi-asserted-by":"crossref","first-page":"31","DOI":"10.4018\/IJISP.201907010102","volume":"13","author":"AK Shukla","year":"2019","unstructured":"Shukla AK (2019) Building an effective approach toward intrusion detection using ensemble feature selection. Int J Inf Secur Priv 13(3):31\u201347","journal-title":"Int J Inf Secur Priv"},{"issue":"3","key":"3161_CR19","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1007\/s11227-016-1805-9","volume":"73","author":"CN Modi","year":"2017","unstructured":"Modi CN, Acha K (2017) Virtualization layer security challenges and intrusion detection\/prevention systems in cloud computing: a comprehensive review. J Supercomput 73(3):1192\u20131234","journal-title":"J Supercomput"},{"issue":"8","key":"3161_CR20","doi-asserted-by":"crossref","first-page":"1801","DOI":"10.1109\/TIFS.2017.2688414","volume":"12","author":"H Luo","year":"2017","unstructured":"Luo H, Chen Z, Li J, Vasilakos AV (2017) Preventing distributed denial-of-service flooding attacks with dynamic path identifiers. IEEE Trans Inf Forensics Secur 12(8):1801\u20131815","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"3161_CR21","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1016\/j.compstruct.2017.11.074","volume":"185","author":"F Javidrad","year":"2018","unstructured":"Javidrad F, Nazari M, Javidrad H (2018) Optimum stacking sequence design of laminates using a hybrid PSO-SA method. Compos Struct 185:607\u2013618","journal-title":"Compos Struct"},{"issue":"6","key":"3161_CR22","doi-asserted-by":"crossref","first-page":"2528","DOI":"10.1007\/s11227-018-2283-z","volume":"74","author":"H Bagherlou","year":"2018","unstructured":"Bagherlou H, Ghaffari A (2018) A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. J Supercomput 74(6):2528\u20132552","journal-title":"J Supercomput"},{"issue":"4","key":"3161_CR23","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1007\/s10489-017-1019-8","volume":"48","author":"SZ Mirjalili","year":"2018","unstructured":"Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805\u2013820","journal-title":"Appl Intell"},{"key":"3161_CR24","unstructured":"Pervez MS, Farid DM (2014) Feature selection and intrusion classification in NSL-KDD cup 99 dataset employing svms. In: The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014). IEEE, pp 1\u20136"},{"issue":"8","key":"3161_CR25","doi-asserted-by":"crossref","first-page":"4385","DOI":"10.1007\/s00521-018-3343-2","volume":"31","author":"S Arora","year":"2019","unstructured":"Arora S, Anand P (2019) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31(8):4385\u20134405","journal-title":"Neural Comput Appl"},{"key":"3161_CR26","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.eswa.2018.09.015","volume":"117","author":"M Mafarja","year":"2019","unstructured":"Mafarja M, Aljarah I, Faris H, Hammouri AI, AlaM A-Z, Mirjalili S (2019) Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl 117:267\u2013286","journal-title":"Expert Syst Appl"},{"key":"3161_CR27","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.asoc.2016.12.010","volume":"51","author":"SA Medjahed","year":"2017","unstructured":"Medjahed SA, Saadi TA, Benyettou A, Ouali M (2017) Kernel-based learning and feature selection analysis for cancer diagnosis. Appl Soft Comput 51:39\u201348","journal-title":"Appl Soft Comput"},{"key":"3161_CR28","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1016\/j.asoc.2017.07.023","volume":"60","author":"F Javidrad","year":"2017","unstructured":"Javidrad F, Nazari M (2017) A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl Soft Comput 60:634\u2013654","journal-title":"Appl Soft Comput"},{"key":"3161_CR29","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1016\/j.energy.2017.03.054","volume":"126","author":"SD Beigvand","year":"2017","unstructured":"Beigvand SD, Abdi H, La Scala M (2017) Hybrid gravitational search algorithm-particle swarm optimization with time varying acceleration coefficients for large scale chped problem. Energy 126:841\u2013853","journal-title":"Energy"},{"issue":"6","key":"3161_CR30","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1109\/TEVC.2012.2182773","volume":"16","author":"FJ Rodriguez","year":"2012","unstructured":"Rodriguez FJ, Garcia-Martinez C, Lozano M (2012) Hybrid metaheuristics based on evolutionary algorithms and simulated annealing: taxonomy, comparison, and synergy test. IEEE Trans Evol Comput 16(6):787\u2013800","journal-title":"IEEE Trans Evol Comput"},{"issue":"4598","key":"3161_CR31","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1126\/science.220.4598.671","volume":"220","author":"S Kirkpatrick","year":"1983","unstructured":"Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671\u2013680","journal-title":"Science"},{"key":"3161_CR32","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1016\/j.eswa.2017.09.013","volume":"92","author":"AH Hamamoto","year":"2018","unstructured":"Hamamoto AH, Carvalho LF, Sampaio LDH, Abr\u00e3o T, Proen\u00e7a ML Jr (2018) Network anomaly detection system using genetic algorithm and fuzzy logic. Expert Syst Appl 92:390\u2013402","journal-title":"Expert Syst Appl"},{"issue":"4","key":"3161_CR33","doi-asserted-by":"crossref","first-page":"1562","DOI":"10.1007\/s11227-017-2182-8","volume":"74","author":"A Sinha","year":"2018","unstructured":"Sinha A, Jana PK (2018) A hybrid mapreduce-based $$k$$-means clustering using genetic algorithm for distributed datasets. J Supercomput 74(4):1562\u20131579","journal-title":"J Supercomput"},{"key":"3161_CR34","doi-asserted-by":"crossref","first-page":"29\u00a0041","DOI":"10.1109\/ACCESS.2018.2835166","volume":"6","author":"AS Sadiq","year":"2018","unstructured":"Sadiq AS, Alkazemi B, Mirjalili S, Ahmed N, Khan S, Ali I, Pathan A-SK, Ghafoor KZ (2018) An efficient ids using hybrid magnetic swarm optimization in wanets. IEEE Access 6:29\u00a0041\u201329\u00a0053","journal-title":"IEEE Access"},{"issue":"9","key":"3161_CR35","doi-asserted-by":"crossref","first-page":"2373","DOI":"10.1016\/j.patcog.2006.12.009","volume":"40","author":"C-H Tsang","year":"2007","unstructured":"Tsang C-H, Kwong S, Wang H (2007) Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recogn 40(9):2373\u20132391","journal-title":"Pattern Recogn"},{"issue":"6","key":"3161_CR36","doi-asserted-by":"crossref","first-page":"1460","DOI":"10.1016\/j.scient.2011.08.025","volume":"18","author":"ML Shahreza","year":"2011","unstructured":"Shahreza ML, Moazzami D, Moshiri B, Delavar M (2011) Anomaly detection using a self-organizing map and particle swarm optimization. Sci Iran 18(6):1460\u20131468","journal-title":"Sci Iran"},{"key":"3161_CR37","doi-asserted-by":"crossref","unstructured":"Zaman S, Karray F (2009) Lightweight ids based on features selection and ids classification scheme. In: 2009 International Conference on Computational Science and Engineering, vol\u00a03. IEEE, pp 365\u2013370","DOI":"10.1109\/CSE.2009.180"},{"issue":"5","key":"3161_CR38","doi-asserted-by":"crossref","first-page":"928","DOI":"10.1109\/TSMCB.2005.847743","volume":"35","author":"O Buchtala","year":"2005","unstructured":"Buchtala O, Klimek M, Sick B (2005) Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans Syst Man Cybern Part B (Cybernetics) 35(5):928\u2013947","journal-title":"IEEE Trans Syst Man Cybern Part B (Cybernetics)"},{"key":"3161_CR39","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.asoc.2014.01.028","volume":"18","author":"F Kuang","year":"2014","unstructured":"Kuang F, Xu W, Zhang S (2014) A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl Soft Comput 18:178\u2013184","journal-title":"Appl Soft Comput"},{"key":"3161_CR40","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.swevo.2017.07.002","volume":"38","author":"JM Vidal","year":"2018","unstructured":"Vidal JM, Orozco ALS, Villalba LJG (2018) Adaptive artificial immune networks for mitigating DoS flooding attacks. Swarm Evolut Comput 38:94\u2013108","journal-title":"Swarm Evolut Comput"},{"issue":"7","key":"3161_CR41","doi-asserted-by":"crossref","first-page":"2881","DOI":"10.1007\/s11227-015-1604-8","volume":"73","author":"D Moon","year":"2017","unstructured":"Moon D, Im H, Kim I, Park JH (2017) DTB-IDS: an intrusion detection system based on decision tree using behavior analysis for preventing apt attacks. J Supercomput 73(7):2881\u20132895","journal-title":"J Supercomput"},{"key":"3161_CR42","doi-asserted-by":"crossref","first-page":"1262","DOI":"10.1016\/j.neucom.2014.11.003","volume":"151","author":"A Karami","year":"2015","unstructured":"Karami A, Guerrero-Zapata M (2015) A hybrid multiobjective RBF-PSO method for mitigating DOS attacks in named data networking. Neurocomputing 151:1262\u20131282","journal-title":"Neurocomputing"},{"key":"3161_CR43","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.eswa.2018.10.021","volume":"119","author":"A Zakeri","year":"2019","unstructured":"Zakeri A, Hokmabadi A (2019) Efficient feature selection method using real-valued grasshopper optimization algorithm. Expert Syst Appl 119:61\u201372","journal-title":"Expert Syst Appl"},{"key":"3161_CR44","doi-asserted-by":"crossref","first-page":"638","DOI":"10.1016\/j.solener.2018.07.014","volume":"171","author":"A Fathy","year":"2018","unstructured":"Fathy A (2018) Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array. Sol Energy 171:638\u2013651","journal-title":"Sol Energy"},{"key":"3161_CR45","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.eswa.2018.06.023","volume":"112","author":"AA Ewees","year":"2018","unstructured":"Ewees AA, Elaziz MA, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156\u2013172","journal-title":"Expert Syst Appl"},{"issue":"2","key":"3161_CR46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TASC.2016.2519420","volume":"26","author":"SV Daneshmand","year":"2016","unstructured":"Daneshmand SV, Heydari H (2016) A diversified multiobjective simulated annealing and genetic algorithm for optimizing a three-phase hts transformer. IEEE Trans Appl Supercond 26(2):1\u201310","journal-title":"IEEE Trans Appl Supercond"},{"key":"3161_CR47","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.neucom.2017.04.053","volume":"260","author":"MM Mafarja","year":"2017","unstructured":"Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302\u2013312","journal-title":"Neurocomputing"},{"issue":"3","key":"3161_CR48","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273\u2013297","journal-title":"Mach Learn"},{"key":"3161_CR49","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1016\/j.asoc.2018.02.003","volume":"65","author":"BO Alijla","year":"2018","unstructured":"Alijla BO, Lim CP, Wong L-P, Khader AT, Al-Betar MA (2018) An ensemble of intelligent water drop algorithm for feature selection optimization problem. Appl Soft Comput 65:531\u2013541","journal-title":"Appl Soft Comput"},{"key":"3161_CR50","series-title":"Studies in computational intelligence","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1007\/978-3-319-13826-8_4","volume-title":"Recent advances in swarm intelligence and evolutionary computation","author":"T Ting","year":"2015","unstructured":"Ting T, Yang XS, Cheng S, Huang K (2015) Hybrid metaheuristic algorithms: past, present, and future. In: Yang XS (ed) Recent advances in swarm intelligence and evolutionary computation. Studies in computational intelligence, vol 585. Springer, Cham, pp 71\u201383"},{"key":"3161_CR51","series-title":"Lecture notes in computer science","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1007\/978-3-540-72523-7_24","volume-title":"Multiple Classifier Systems. MCS 2007","author":"J Maudes","year":"2007","unstructured":"Maudes J, Rodr\u00edguez JJ, Garc\u00eda-Osorio C (2007) Cascading for nominal data. In: Haindl M, Kittler J, Roli F (eds) Multiple Classifier Systems. MCS 2007. Lecture notes in computer science, vol 4472. Springer, Berlin, Heidelberg, pp 231\u2013240"},{"key":"3161_CR52","doi-asserted-by":"crossref","unstructured":"Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the KDD cup 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications. IEEE, pp 1\u20136","DOI":"10.1109\/CISDA.2009.5356528"},{"issue":"4","key":"3161_CR53","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1016\/j.jksus.2018.03.018","volume":"31","author":"M Mazini","year":"2019","unstructured":"Mazini M, Shirazi B, Mahdavi I (2019) Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and adaboost algorithms. J King Saud Univ Comput Inf Sci 31(4):541\u2013553","journal-title":"J King Saud Univ Comput Inf Sci"},{"key":"3161_CR54","doi-asserted-by":"publisher","DOI":"10.1109\/TSUSC.2018.2808430","author":"N Moustafa","year":"2018","unstructured":"Moustafa N, Misra G, Slay J (2018) Generalized outlier gaussian mixture technique based on automated association features for simulating and detecting web application attacks. IEEE Trans Sustain Comput. https:\/\/doi.org\/10.1109\/TSUSC.2018.2808430","journal-title":"IEEE Trans Sustain Comput"},{"issue":"3","key":"3161_CR55","first-page":"27","volume":"2","author":"C-C Chang","year":"2011","unstructured":"Chang C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27","journal-title":"ACM Trans Intell Syst Technol"},{"key":"3161_CR56","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.jocs.2017.03.006","volume":"25","author":"S Aljawarneh","year":"2018","unstructured":"Aljawarneh S, Aldwairi M, Yassein MB (2018) Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J Comput Sci 25:152\u2013160","journal-title":"J Comput Sci"},{"key":"3161_CR57","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.knosys.2017.09.014","volume":"136","author":"H Wang","year":"2017","unstructured":"Wang H, Gu J, Wang S (2017) An effective intrusion detection framework based on svm with feature augmentation. Knowl Based Syst 136:130\u2013139","journal-title":"Knowl Based Syst"},{"key":"3161_CR58","first-page":"03","volume":"15","author":"M Abd\u00a0Eldayem","year":"2014","unstructured":"Abd\u00a0Eldayem M (2014) A proposed http service based ids. Egypt Inform J 15:03","journal-title":"Egypt Inform J"},{"key":"3161_CR59","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.eswa.2019.01.063","volume":"124","author":"M Lopez-Martin","year":"2019","unstructured":"Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J (2019) Shallow neural network with kernel approximation for prediction problems in highly demanding data networks. Expert Syst Appl 124:196\u2013208","journal-title":"Expert Syst Appl"},{"issue":"4","key":"3161_CR60","doi-asserted-by":"crossref","first-page":"1690","DOI":"10.1016\/j.eswa.2013.08.066","volume":"41","author":"G Kim","year":"2014","unstructured":"Kim G, Lee S, Kim S (2014) A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Syst Appl 41(4):1690\u20131700","journal-title":"Expert Syst Appl"},{"key":"3161_CR61","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.neucom.2019.02.047","volume":"340","author":"NG Bhuvaneswari Amma","year":"2019","unstructured":"Bhuvaneswari Amma NG, Selvakumar S (2019) Deep radial intelligence with cumulative incarnation approach for detecting denial of service attacks. Neurocomputing 340:294\u2013308","journal-title":"Neurocomputing"},{"key":"3161_CR62","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.comnet.2018.11.010","volume":"148","author":"F Salo","year":"2019","unstructured":"Salo F, Nassif AB, Essex A (2019) Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection. Comput Netw 148:164\u2013175","journal-title":"Comput Netw"},{"key":"3161_CR63","series-title":"Advances in intelligent systems and computing","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/978-981-10-7871-2_13","volume-title":"Progress in computing, analytics and networking","author":"N Moustafa","year":"2018","unstructured":"Moustafa N, Creech G, Slay J (2018) Anomaly detection system using beta mixture models and outlier detection. In: Pattnaik P, Rautaray S, Das H, Nayak J (eds) Progress in computing, analytics and networking. Advances in intelligent systems and computing, vol 710. Springer, Singapore, pp 125\u2013135"},{"key":"3161_CR64","unstructured":"Karami A, Guerrero\u00a0Zapata M (2014) Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map. In: Proceedings of the Second International Workshop on Artificial Intelligence and Cognition (AIC 2014): Torino, Italy, November 26\u201327, 2014. CEUR-WS. org, pp 156\u2013163"},{"key":"3161_CR65","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/978-3-319-59439-2_5","volume-title":"Data analytics and decision support for cybersecurity","author":"N Moustafa","year":"2017","unstructured":"Moustafa N, Creech G, Slay J (2017) Big data analytics for intrusion detection system: statistical decision-making using finite dirichlet mixture models. In: Palomares Carrascosa I, Kalutarage H, Huang Y (eds) Data analytics and decision support for cybersecurity. Data Analytics, Springer, Cham, pp 127\u2013156"}],"container-title":["The Journal of Supercomputing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-020-03161-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11227-020-03161-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-020-03161-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,1,19]],"date-time":"2021-01-19T00:42:13Z","timestamp":1611016933000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11227-020-03161-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1,20]]},"references-count":65,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2020,11]]}},"alternative-id":["3161"],"URL":"http:\/\/dx.doi.org\/10.1007\/s11227-020-03161-w","relation":{},"ISSN":["0920-8542","1573-0484"],"issn-type":[{"value":"0920-8542","type":"print"},{"value":"1573-0484","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,1,20]]},"assertion":[{"value":"20 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}