iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S11227-018-2263-3
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:51:54Z","timestamp":1726253514692},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2018,1,27]],"date-time":"2018-01-27T00:00:00Z","timestamp":1517011200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Supercomput"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1007\/s11227-018-2263-3","type":"journal-article","created":{"date-parts":[[2018,1,27]],"date-time":"2018-01-27T21:15:04Z","timestamp":1517087704000},"page":"4867-4892","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":91,"title":["A machine learning approach for feature selection traffic classification using security analysis"],"prefix":"10.1007","volume":"74","author":[{"given":"Muhammad","family":"Shafiq","sequence":"first","affiliation":[]},{"given":"Xiangzhan","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Ali Kashif","family":"Bashir","sequence":"additional","affiliation":[]},{"given":"Hassan Nazeer","family":"Chaudhry","sequence":"additional","affiliation":[]},{"given":"Dawei","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,1,27]]},"reference":[{"issue":"2","key":"2263_CR1","first-page":"119","volume":"25","author":"P Foremski","year":"2013","unstructured":"Foremski P (2013) On different ways to classify internet traffic? A short review of selected publications. Theor Appl Inform 25(2):119\u2013136","journal-title":"Theor Appl Inform"},{"key":"2263_CR2","first-page":"4","volume":"3431","author":"A Moore","year":"2005","unstructured":"Moore A, Papagiannaki K (2005) Toward the accurate identification of network applications. Passiv Act Netw Meas 3431:4\u201354","journal-title":"Passiv Act Netw Meas"},{"issue":"4","key":"2263_CR3","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/SURV.2008.080406","volume":"10","author":"T Nguyen","year":"2008","unstructured":"Nguyen T, Armitage G (2008) A survey of techniques for internet traffic classification using machine learning. IEEE Commun Surv Tutor 10(4):56\u201376","journal-title":"IEEE Commun Surv Tutor"},{"key":"2263_CR4","doi-asserted-by":"crossref","unstructured":"Karagiannis T, Broido A, Faloutsos M, Claffy K (2004) Transport layer identification of P2P traffic. In: IMC \u201904 Proceedings 4th ACM SIGCOMM Conference Internet Measurement, pp 12\u2013134","DOI":"10.1145\/1028788.1028804"},{"key":"2263_CR5","doi-asserted-by":"crossref","unstructured":"Sen S, Spatscheck O, Wang D (2004) Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings 13th International Conference World Wide Web, p 521","DOI":"10.1145\/988672.988742"},{"key":"2263_CR6","unstructured":"Karagiannis T (2004) Application-specific payload bit strings. http:\/\/alumni.cs.ucr.edu\/~tkarag\/papers\/strings.txt , 2004. [Online]. http:\/\/alumni.cs.ucr.edu\/~tkarag\/papers\/strings.txt . [Toegang verkry: 0Jan-2017]"},{"key":"2263_CR7","unstructured":"Haffner P, Sen S, Spatscheck O, Acas DW (2005) Automated construction of application signatures. In: Proceedings 2005 Workshop Mining Network Data, pp 197\u2013202"},{"key":"2263_CR8","unstructured":"Moore AW, Zuev D (2005) Internet traffic classification using Bayesian analysis techniques categories and subject descriptors. In: Sigmetrics, pp 50\u201360"},{"key":"2263_CR9","doi-asserted-by":"crossref","unstructured":"Singh R, Kumar H, Singla R (2013) Sampling based approaches to handle imbalances in network traffic dataset for machine learning techniques. arXiv Prepr. arXiv1311.2677","DOI":"10.5121\/csit.2013.3704"},{"key":"2263_CR10","doi-asserted-by":"crossref","unstructured":"Labovitz C, Iekel-Johnson S, McPherson D, Oberheide J, Jahanian F (2010) Internet inter-domain traffic. SIGCOMM Computer Communication Review, vol 41","DOI":"10.1145\/1851182.1851194"},{"issue":"8","key":"2263_CR11","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H Peng","year":"2005","unstructured":"Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226\u20131238","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2263_CR12","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1109\/42.563664","volume":"16","author":"F Maes","year":"1997","unstructured":"Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187","journal-title":"IEEE Trans Med Imaging"},{"issue":"12","key":"2263_CR13","doi-asserted-by":"publisher","first-page":"1457","DOI":"10.1016\/j.comcom.2012.04.012","volume":"35","author":"H Zhang","year":"2012","unstructured":"Zhang H, Lu G, Qassrawi MT, Zhang Y, Yu X (2012) Feature selection for optimizing traffic classification. Comput Commun 35(12):1457\u20131471","journal-title":"Comput Commun"},{"issue":"7","key":"2263_CR14","doi-asserted-by":"publisher","first-page":"1145","DOI":"10.1016\/S0031-3203(96)00142-2","volume":"30","author":"AP Bradley","year":"1997","unstructured":"Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145\u20131159","journal-title":"Pattern Recognit"},{"key":"2263_CR15","unstructured":"Shafiq M, Yu X, Laghari AA (2016) WeChat text messages service flow traffic classification using machine learning technique. In: 2016 6th International Conference IT Convergence and Security ICITCS 2016"},{"key":"2263_CR16","doi-asserted-by":"crossref","unstructured":"Shafiq M, Yu X (2017) Effective packet number for 5G im WeChat application at early stage traffic classification. Mob Inf Syst 2017","DOI":"10.1155\/2017\/3146868"},{"key":"2263_CR17","unstructured":"Shafiq M et\u00a0al (2017) WeChat text and picture messages service flow traffic classification using machine learning technique. In: Proceedings\u201418th IEEE International Conference High Performing Computer Communication 14th IEEE International Conference Smart City 2nd IEEE International Conference Data Science System HPCC\/SmartCity\/DSS 2016, pp 58\u201362"},{"key":"2263_CR18","doi-asserted-by":"crossref","unstructured":"Peng L, Zhang H, Yang B, Chen Y, Qassrawi MT, Lu G (2010) Traffic identification using flexible neural trees. In: IEEE International Workshop Quality Servervice IWQoS","DOI":"10.1109\/IWQoS.2010.5542729"},{"key":"2263_CR19","doi-asserted-by":"crossref","unstructured":"Lu G, Zhang H, Sha X, Chen C, Peng L (2010) TCFOM: a robust traffic classification framework based on OC-SVM combined with MC-SVM. In: Proceedings\u20142010 International Conference Communication Intelligence Information Security ICCIIS 2010, pp 180\u2013186","DOI":"10.1109\/ICCIIS.2010.57"},{"issue":"1","key":"2263_CR20","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1109\/TNN.2006.883010","volume":"18","author":"T Auld","year":"2007","unstructured":"Auld T, Moore AW, Gull SF (2007) Bayesian neural networks for internet traffic classification. IEEE Trans Neural Netw 18(1):223\u2013239","journal-title":"IEEE Trans Neural Netw"},{"key":"2263_CR21","doi-asserted-by":"crossref","unstructured":"Cieslak DA, Chawla NV, Striegel A (2006) Combating imbalance in network intrusion datasets. In: IEEE International Conference Granular Computing, pp 732\u2013737","DOI":"10.1109\/GRC.2006.1635905"},{"key":"2263_CR22","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1109\/INFCOM.2009.5061976","volume":"2009","author":"D Nechay","year":"2009","unstructured":"Nechay D, Pointurier Y, Coates M (2009) Controlling false alarm\/discovery rates in online internet traffic flow classification. IEEE INFOCOM 2009:684\u2013692","journal-title":"IEEE INFOCOM"},{"issue":"6","key":"2263_CR23","doi-asserted-by":"publisher","first-page":"790","DOI":"10.1016\/j.comnet.2008.11.016","volume":"53","author":"W Li","year":"2009","unstructured":"Li W, Canini M, Moore AW, Bolla R (2009) Efficient application identification and the temporal and spatial stability of classification schema. Comput Netw 53(6):790\u2013809","journal-title":"Comput Netw"},{"issue":"10","key":"2263_CR24","doi-asserted-by":"publisher","first-page":"2236","DOI":"10.1016\/j.comcom.2007.05.005","volume":"30","author":"DG Gomes","year":"2007","unstructured":"Gomes DG, Agoulmine N, Bennani Y, de Souza JN (2007) Predictive connectionist approach for VoD bandwidth management. Comput Commun 30(10):2236\u20132247","journal-title":"Comput Commun"},{"key":"2263_CR25","doi-asserted-by":"crossref","unstructured":"Chen X, Wasikowski M (2008) FAST: a roc-based feature selection metric for small samples and imbalanced data classification problems. In: Proceeding 14th ACM SIGKDD International Conference Knowledge Discovery and Data Mining\u2014KDD 08, pp 124\u2013132","DOI":"10.1145\/1401890.1401910"},{"issue":"\u20132","key":"2263_CR26","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1023\/B:MACH.0000035476.95130.99","volume":"57","author":"P Putten Van Der","year":"2004","unstructured":"Van Der Putten P, Van Someren M (2004) A bias-variance analysis of a real world learning problem: the CoIL challenge 2000. Mach Learn 57(\u20132):177\u2013195","journal-title":"Mach Learn"},{"key":"2263_CR27","doi-asserted-by":"crossref","unstructured":"Lei D, Xiaochun Y, Jun X (2008) Optimizing traffic classification using hybrid feature selection. In: Ninth International Conference Web-Age Information Management, pp 520\u2013525","DOI":"10.1109\/WAIM.2008.30"},{"issue":"1","key":"2263_CR28","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1145\/1007730.1007741","volume":"6","author":"Z Zheng","year":"2004","unstructured":"Zheng Z, Wu X, Srihari R (2004) Feature selection for text categorization on imbalanced data. SIGKDD Explor 6(1):80\u201389","journal-title":"SIGKDD Explor"},{"key":"2263_CR29","doi-asserted-by":"crossref","unstructured":"Lim Y, Kim H, Jeong J, Kim C, Kwon TT, Choi Y (2010) Internet traffic classification demystified: on the sources of the discriminative power. In: Proceedings 6th International Conference, p 9","DOI":"10.1145\/1921168.1921180"},{"key":"2263_CR30","doi-asserted-by":"crossref","unstructured":"Kamal AHM, Zhu X, Pandya A, Hsu S (2009) Feature selection with biased sample distributions. In: 2009 IEEE International Conference on Information Reuse and Integration IRI, pp 23\u201328","DOI":"10.1109\/IRI.2009.5211613"},{"issue":"10","key":"2263_CR31","doi-asserted-by":"publisher","first-page":"1388","DOI":"10.1109\/TKDE.2009.187","volume":"22","author":"M Wasikowski","year":"2010","unstructured":"Wasikowski M, Chen X (2010) Combating the small sample class imbalance problem using feature selection. IEEE Trans Knowl Data Eng 22(10):1388\u20131400","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"2263_CR32","unstructured":"Moore A, Zuev D, Crogan M (2005) Discriminators for use in flow-based classification"},{"key":"2263_CR33","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1007\/978-3-319-11197-1_39","volume-title":"Algorithms and Architectures for Parallel Processing","author":"Lizhi Peng","year":"2014","unstructured":"Peng L, Zhang H, Yang B, Chen Y (2014) Feature evaluation for early stage internet traffic identification. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence Lecture Notes in Bioinformatics), vol 8630. LNCS, pp 51\u2013525"},{"key":"2263_CR34","first-page":"18","volume":"44","author":"L Peng","year":"2015","unstructured":"Peng L, Yang B, Chen Y, Chen Z (2015) Effectiveness of statistical features for early stage internet traffic identification? Int J Parallel 44:18\u2013197","journal-title":"Int J Parallel"},{"issue":"2","key":"2263_CR35","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1145\/1129582.1129589","volume":"36","author":"L Bernaille","year":"2006","unstructured":"Bernaille L, Teixeira R, Akodjenou I, Soule A, Salamatian K (2006) Traffic classification on the fly. ACM SIGCOMM Comput Commun Rev 36(2):23\u201326","journal-title":"ACM SIGCOMM Comput Commun Rev"},{"key":"2263_CR36","doi-asserted-by":"crossref","unstructured":"Bahl LB et\u00a0al (1986) Maximum mutual information estimation of hidden Markov model parameters for speech recognition. In: ICASSP \u201986. International Conference on Acoustics Speech Signal Process, vol 11, pp 49\u201352","DOI":"10.1109\/ICASSP.1986.1169179"},{"key":"2263_CR37","unstructured":"Peng H Mutual information Matlab Toolbox. https:\/\/www.mathworks.com\/matlabcentral\/fileexchange\/14888-mutual-information-computation"},{"key":"2263_CR38","doi-asserted-by":"publisher","first-page":"252","DOI":"10.1016\/j.neucom.2014.12.053","volume":"156","author":"L Peng","year":"2015","unstructured":"Peng L, Yang B, Chen Y (2015) Effective packet number for early stage internet traffic identification. Neurocomputing 156:252","journal-title":"Neurocomputing"},{"key":"2263_CR39","unstructured":"WireShark Trace Traffic WireShark, 2015. [Online]. https:\/\/www.wireshark.org\/ . [Toegang verkry: 0Jan-2015]"},{"key":"2263_CR40","unstructured":"Introduction to NetMate Tool. [Online]. https:\/\/dan.arndt.ca\/nims\/calculating-flow-statistics-using-netmate\/comment-page-1\/"},{"key":"2263_CR41","unstructured":"Makhoul J, Kubala F, Schwartz R, Weischedel R (1999) Performance measures for information extraction. In: Proceedings DARPA Broadcast News Workshop, pp 249\u2013252"}],"container-title":["The Journal of Supercomputing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11227-018-2263-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-018-2263-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11227-018-2263-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T15:40:25Z","timestamp":1720021225000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11227-018-2263-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1,27]]},"references-count":41,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2018,10]]}},"alternative-id":["2263"],"URL":"https:\/\/doi.org\/10.1007\/s11227-018-2263-3","relation":{},"ISSN":["0920-8542","1573-0484"],"issn-type":[{"value":"0920-8542","type":"print"},{"value":"1573-0484","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,1,27]]},"assertion":[{"value":"27 January 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}