iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S11075-023-01515-Y
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,9]],"date-time":"2023-12-09T18:10:11Z","timestamp":1702145411686},"reference-count":16,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2023,3,22]],"date-time":"2023-03-22T00:00:00Z","timestamp":1679443200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,22]],"date-time":"2023-03-22T00:00:00Z","timestamp":1679443200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100006365","name":"Universidad de Cantabria","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100006365","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Numer Algor"],"published-print":{"date-parts":[[2023,10]]},"abstract":"Abstract<\/jats:title>An algorithm and a MATLAB implementation for computing the Kummer functionU<\/jats:italic>(a<\/jats:italic>,b<\/jats:italic>,x<\/jats:italic>) and its derivative is given in this paper. The algorithm is efficient and accurate. Numerical tests show that the MATLAB algorithm allows the computation of the function with$\\sim 10^{-14}$<\/jats:tex-math>\u223c<\/mml:mo>1<\/mml:mn>0<\/mml:mn><\/mml:mrow>\u2212<\/mml:mo>14<\/mml:mn><\/mml:mrow><\/mml:msup><\/mml:math><\/jats:alternatives><\/jats:inline-formula>relative accuracy in the parameter region (a<\/jats:italic>,b<\/jats:italic>,x<\/jats:italic>) \u2208 (0,500) \u00d7 (0,500) \u00d7 (0,1000) in double-precision floating point arithmetic.<\/jats:p>","DOI":"10.1007\/s11075-023-01515-y","type":"journal-article","created":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T03:23:04Z","timestamp":1679887384000},"page":"669-679","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Computation of the confluent hypergeometric function U(a,b,x) and its derivative for positive arguments"],"prefix":"10.1007","volume":"94","author":[{"given":"Amparo","family":"Gil","sequence":"first","affiliation":[]},{"given":"Diego","family":"Ruiz-Antol\u00edn","sequence":"additional","affiliation":[]},{"given":"Javier","family":"Segura","sequence":"additional","affiliation":[]},{"given":"Nico M.","family":"Temme","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,22]]},"reference":[{"key":"1515_CR1","doi-asserted-by":"crossref","unstructured":"Felsen, L.B., Marcuvitz, N.: Radiation and scattering of waves. Wiley-IEEE Press (1994)","DOI":"10.1109\/9780470546307"},{"key":"1515_CR2","doi-asserted-by":"publisher","first-page":"042706","DOI":"10.1103\/PhysRevA.82.042706","volume":"82","author":"G Gasaneo","year":"2010","unstructured":"Gasaneo, G., Ancarani, L.U.: Two-body Coulomb problems with sources. Phys. Rev. A 82, 042706 (2010)","journal-title":"Phys. Rev. A"},{"key":"1515_CR3","doi-asserted-by":"publisher","first-page":"108563","DOI":"10.1016\/j.cpc.2022.108563","volume":"238","author":"A Gil","year":"2023","unstructured":"Gil, A., Odrzywo\u0142ek, A., Segura, J., Temme, N.M.: Evaluation of the generalized Fermi-Dirac integral and its derivatives for moderate\/large values of the parameters. Comput. Phys. Commun. 238, 108563 (2023)","journal-title":"Comput. Phys. Commun."},{"key":"1515_CR4","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1016\/j.amc.2015.09.047","volume":"271","author":"A Gil","year":"2015","unstructured":"Gil, A., Segura, J., Temme, N.M.: Computing the Kummer function U(a,b,z) for small values of the arguments. Appl. Math. Comput. 271, 532\u2013539 (2015)","journal-title":"Appl. Math. Comput."},{"key":"1515_CR5","doi-asserted-by":"crossref","first-page":"126618","DOI":"10.1016\/j.amc.2021.126618","volume":"412","author":"A Gil","year":"2022","unstructured":"Gil, A., Segura, J., Temme, N.M.: Complete asymptotic expansions for the relativistic Fermi-Dirac integral. Appl. Math. Comput. 412, 126618 (2022)","journal-title":"Appl. Math. Comput."},{"issue":"3","key":"1515_CR6","doi-asserted-by":"publisher","first-page":"Art. 30, 26","DOI":"10.1145\/3328732","volume":"45","author":"F Johansson","year":"2019","unstructured":"Johansson, F.: Computing hypergeometric functions rigorously. ACM Trans. Math. Softw. 45(3), Art. 30, 26 (2019)","journal-title":"ACM Trans. Math. Softw."},{"key":"1515_CR7","unstructured":"Jones, E., Oliphant, T., Peterson, P.: SciPy: Open Source Scientific Tools for Python (2001)"},{"key":"1515_CR8","first-page":"33203:,1","volume":"25","author":"MA Esrick","year":"2022","unstructured":"Mathews, W.N. Jr, Esrick, M.A., Teoh, Z.Y., Freericks, J.K.: A physicist\u2019s guide to the solution of Kummer\u2019s equation and confluent hypergeometric functions. Condensed Matter Phys. 25, 33203:,1\u201323 (2022)","journal-title":"Condensed Matter Phys."},{"issue":"1","key":"1515_CR9","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/s002110100285","volume":"90","author":"KE Muller","year":"2001","unstructured":"Muller, K.E.: Computing the confluent hypergeometric function, M(a,b,x). Numer. Math. 90(1), 179\u2013196 (2001)","journal-title":"Numer. Math."},{"key":"1515_CR10","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1145\/131766.131774","volume":"18","author":"M Nardin","year":"1992","unstructured":"Nardin, M., Perger, W.F., Bhalla, A.: Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Soft. 18, 345\u2013349 (1992)","journal-title":"ACM Trans. Math. Soft."},{"key":"1515_CR11","unstructured":"Olde Daalhuis, A.B.: Chapter 13, Confluent hypergeometric functions. In: NIST Handbook of Mathematical Functions, pp 321\u2013349. Cambridge University Press, Cambridge (2010a). http:\/\/dlmf.nist.gov\/13"},{"key":"1515_CR12","doi-asserted-by":"crossref","unstructured":"Schweizer, W.: Confluent hypergeometric function. In: Special Functions in Physics with MATLAB, pp 91\u201399. Springer International Publishing (2021)","DOI":"10.1007\/978-3-030-64232-7_6"},{"key":"1515_CR13","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/s00211-008-0175-5","volume":"111","author":"J Segura","year":"2008","unstructured":"Segura, J., Temme, N.M.: Numerically satisfactory solutions of Kummer recurrence relations. Numer. Math. 111, 109\u2013119 (2008)","journal-title":"Numer. Math."},{"issue":"1","key":"1515_CR14","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1007\/BF01396306","volume":"41","author":"NM Temme","year":"1983","unstructured":"Temme, N.M.: The numerical computation of the confluent hypergeometric function U(a,b,z). Numer. Math. 41(1), 63\u201382 (1983)","journal-title":"Numer. Math."},{"issue":"6","key":"1515_CR15","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1016\/j.indag.2022.08.001","volume":"33","author":"NM Temme","year":"2022","unstructured":"Temme, N.M., Veling, E.J.M.: Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z. Indag. Math. 33(6), 121\u20131235 (2022)","journal-title":"Indag. Math."},{"key":"1515_CR16","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1145\/1057594.1057595","volume":"17","author":"WH Vandevender","year":"1982","unstructured":"Vandevender, W.H., Haskell, K.H.: The SLATEC mathematical subprogram library. ACM SIGNUM Newsl. 17, 16\u201321 (1982)","journal-title":"ACM SIGNUM Newsl."}],"container-title":["Numerical Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-023-01515-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11075-023-01515-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11075-023-01515-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,9]],"date-time":"2023-12-09T17:31:17Z","timestamp":1702143077000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11075-023-01515-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,22]]},"references-count":16,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,10]]}},"alternative-id":["1515"],"URL":"https:\/\/doi.org\/10.1007\/s11075-023-01515-y","relation":{},"ISSN":["1017-1398","1572-9265"],"issn-type":[{"value":"1017-1398","type":"print"},{"value":"1572-9265","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,22]]},"assertion":[{"value":"6 November 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}