{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,13]],"date-time":"2023-11-13T08:16:49Z","timestamp":1699863409515},"reference-count":32,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2020,10,30]],"date-time":"2020-10-30T00:00:00Z","timestamp":1604016000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,10,30]],"date-time":"2020-10-30T00:00:00Z","timestamp":1604016000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Comput"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1007\/s11047-020-09816-0","type":"journal-article","created":{"date-parts":[[2020,10,30]],"date-time":"2020-10-30T20:02:46Z","timestamp":1604088166000},"page":"805-819","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A study of model and hyper-parameter selection strategies for classifier ensembles: a robust analysis on different optimization algorithms and extended results"],"prefix":"10.1007","volume":"20","author":[{"given":"Antonino A.","family":"Feitosa-Neto","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1517-2211","authenticated-orcid":false,"given":"Jo\u00e3o C.","family":"Xavier-J\u00fanior","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3684-3814","authenticated-orcid":false,"given":"Anne M. P.","family":"Canuto","sequence":"additional","affiliation":[]},{"given":"Alexandre C. M.","family":"Oliveira","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,30]]},"reference":[{"key":"9816_CR1","unstructured":"Anh T, Austin W, Jeremy G, Keegan H, Bayan BC, Reza F (2019) Towards automated machine learning: evaluation and comparison of AutoML approaches and tools. ArXiv e-prints arXiv:1908.05557"},{"issue":"2","key":"9816_CR2","first-page":"1","volume":"2","author":"C Apoorva","year":"2018","unstructured":"Apoorva C (2018) A study on framework of H$$_{2}$$O for data science. Int J Adv Res Big Data Manag Syst 2(2):1\u20138","journal-title":"Int J Adv Res Big Data Manag Syst"},{"issue":"1","key":"9816_CR3","doi-asserted-by":"publisher","first-page":"014008","DOI":"10.1088\/1749-4699\/8\/1\/014008","volume":"8","author":"J Bergstra","year":"2015","unstructured":"Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD (2015) Hyperopt: a python library for model selection and hyperparameter optimization. Comput Sci Discov 8(1):014008","journal-title":"Comput Sci Discov"},{"key":"9816_CR4","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1016\/S0377-2217(00)00305-2","volume":"135","author":"I Charon","year":"2001","unstructured":"Charon I, Hudry O (2001) The noising methods: a generalization of some metaheuristics. Eur J Oper Res 135:86\u2013101","journal-title":"Eur J Oper Res"},{"key":"9816_CR5","doi-asserted-by":"crossref","unstructured":"de S\u2019a AGC, Pinto WJGS, Oliveira LOVB, Pappa GL (2017) \u2019RECIPE: a grammar-based framework for automatically evolving classification pipelines. In: Proceedings of the 20th European conference on genetic programming (EuroGP\u201917), LNCS 10196. Springer, pp 246\u2013261","DOI":"10.1007\/978-3-319-55696-3_16"},{"key":"9816_CR6","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar J (2006) Statistical comparisons of classifiers over multiple datasets. J Mach Learn Res 7:1\u201330","journal-title":"J Mach Learn Res"},{"key":"9816_CR7","doi-asserted-by":"crossref","unstructured":"Feitosa-Neto A, Xavier-Junior JC, Canuto A, Oliveira A (2019) A comparative study on automatic model and hyper-parameter selection in classifier ensembles. In: 8th Brazilian conference on intelligent systems (BRACIS). pp. 323\u2013328","DOI":"10.1109\/BRACIS.2019.00064"},{"issue":"2","key":"9816_CR8","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/0167-6377(89)90002-3","volume":"8","author":"TA Feo","year":"1989","unstructured":"Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8(2):67\u201371","journal-title":"Oper Res Lett"},{"key":"9816_CR9","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/BF01096763","volume":"6","author":"TA Feo","year":"1995","unstructured":"Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109\u2013133","journal-title":"J Glob Optim"},{"key":"9816_CR10","first-page":"2962","volume":"28","author":"M Feurer","year":"2015","unstructured":"Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015) Efficient and robust automated machine learning. Adva Neural Info Process Syst 28:2962\u20132970","journal-title":"Adva Neural Info Process Syst"},{"key":"9816_CR11","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-1665-5","volume-title":"Handbook of metaheuristics","author":"M Gendreau","year":"2010","unstructured":"Gendreau M, Potvin J (2010) Handbook of metaheuristics, 2nd edn. Springer, New York","edition":"2"},{"issue":"5","key":"9816_CR12","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1016\/0305-0548(86)90048-1","volume":"13","author":"F Glover","year":"1986","unstructured":"Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533\u2013549","journal-title":"Comput Oper Res"},{"issue":"3","key":"9816_CR13","first-page":"653","volume":"29","author":"F Glover","year":"2000","unstructured":"Glover F, Laguna M, Mart\u00ed R (2000) Fundamentals of scatter search and path relinking. Control Cybern 29(3):653\u2013684","journal-title":"Control Cybern"},{"key":"9816_CR14","doi-asserted-by":"crossref","unstructured":"Goldbarg EFG, Goldbarg MC, de Souza GR (2006) Particle swarm optimization algorithm for the traveling salesman problem. In: Gottlieb J, Raidl GR (eds) Evolutionary computation in combinatorial optimization. EvoCOP, Lecture notes in computer science, vol 3906. Springer, Berlin","DOI":"10.1007\/11730095_9"},{"issue":"1","key":"9816_CR15","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10\u201318","journal-title":"ACM SIGKDD Explor Newsl"},{"issue":"1","key":"9816_CR16","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1038\/scientificamerican0792-66","volume":"267","author":"JH Holland","year":"1992","unstructured":"Holland JH (1992) Genetic algorithms. Sci Am 267(1):66\u201372","journal-title":"Sci Am"},{"key":"9816_CR17","doi-asserted-by":"crossref","unstructured":"Jin H, Song Q, Hu X (2018) Auto-Keras: an efficient neural architecture search system. ArXiv e-prints arXiv:1806.10282","DOI":"10.1145\/3292500.3330648"},{"key":"9816_CR18","doi-asserted-by":"crossref","unstructured":"Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. pp 1942\u20131948","DOI":"10.1109\/ICNN.1995.488968"},{"issue":"1","key":"9816_CR19","first-page":"826","volume":"18","author":"L Kotthoff","year":"2017","unstructured":"Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K (2017) Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA. J Mach Learn Res 18(1):826\u2013830l","journal-title":"J Mach Learn Res"},{"key":"9816_CR20","doi-asserted-by":"publisher","DOI":"10.1002\/0471660264","volume-title":"Combining pattern classifiers: methods and algorithms","author":"LI Kuncheva","year":"2004","unstructured":"Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley, Hoboken"},{"key":"9816_CR21","unstructured":"Lacoste A, Larochelle H, Laviolette F, Marchand M (2014) Sequential model-based ensemble optimization. Computing Research Repository (CoRR)"},{"issue":"1","key":"9816_CR22","first-page":"27","volume":"29","author":"IA Lawal","year":"2017","unstructured":"Lawal IA, Abdulkarim SA (2017) Adaptive SVM for data stream classification. S Afr Comput J 29(1):27\u201342","journal-title":"S Afr Comput J"},{"key":"9816_CR23","unstructured":"L\u00e9vesque J, Gagn\u00e9 C, Sabourin R (2016) Bayesian hyperparameter optimization for ensemble learning. In: Proceedings of the 32nd conference on uncertainty in artificial intelligence (UAI). Jersey City, pp 437\u2013446"},{"key":"9816_CR24","doi-asserted-by":"publisher","first-page":"1495","DOI":"10.1007\/s10994-018-5735-z","volume":"107","author":"F Mohr","year":"2018","unstructured":"Mohr F, Wever M, H\u00fcllermeier E (2018) ML-Plan: automated machine learning via hierarchical planning. Mach Learn 107:1495\u20131515","journal-title":"Mach Learn"},{"key":"9816_CR25","doi-asserted-by":"publisher","first-page":"416","DOI":"10.1007\/s10489-017-0982-4","volume":"48","author":"AF Neto","year":"2018","unstructured":"Neto AF, Canuto A (2018) An exploratory study of mono and multi-objective metaheuristics to ensemble of classifiers. Appl Intell J 48:416\u2013431","journal-title":"Appl Intell J"},{"key":"9816_CR26","doi-asserted-by":"crossref","unstructured":"Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: combined Selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, pp 847\u2013855","DOI":"10.1145\/2487575.2487629"},{"key":"9816_CR27","doi-asserted-by":"crossref","unstructured":"Veloso B, Gama J, Malheiro B (2018) Self hyper-parameter tuning for data streams. In: International conference on discovery science. Springer, Cham, pp 241\u2013255","DOI":"10.1007\/978-3-030-01771-2_16"},{"key":"9816_CR28","doi-asserted-by":"crossref","unstructured":"Wang Y, Ni XS (2019) A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization. arXiv e-prints","DOI":"10.5121\/ijdms.2019.11101"},{"key":"9816_CR29","doi-asserted-by":"crossref","unstructured":"Wistuba M, Schilling N and Schmidt-Thieme L (2017) Automatic Frankensteining: creating complex ensembles autonomously. In: Proceedings SIAM international conference on data mining. SIAM, pp 741\u2013749","DOI":"10.1137\/1.9781611974973.83"},{"key":"9816_CR30","doi-asserted-by":"publisher","first-page":"1341","DOI":"10.1162\/neco.1996.8.7.1341","volume":"8","author":"D Wolpert","year":"1996","unstructured":"Wolpert D (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 8:1341\u20131390","journal-title":"Neural Comput"},{"key":"9816_CR31","doi-asserted-by":"crossref","unstructured":"Xavier-Junior JC, Freitas AA, Feitosa-Neto A, Ludermir T (2018) A novel evolutionary algorithm for automated machine learning focusing on classifier ensembles. In: Proceedings of the 7th Brazilian conference on intelligent systems (BRACIS). S\u00e3o Paulo, pp 462\u2013467","DOI":"10.1109\/BRACIS.2018.00086"},{"key":"9816_CR32","doi-asserted-by":"crossref","unstructured":"Yang C, Akimoto Y, Kim DW et al (2018) Oboe: collaborative filtering for AutoML model selection. ArXiv e-prints arXiv:1808.03233","DOI":"10.1145\/3292500.3330909"}],"container-title":["Natural Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11047-020-09816-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11047-020-09816-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11047-020-09816-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,18]],"date-time":"2021-11-18T04:57:26Z","timestamp":1637211446000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11047-020-09816-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,30]]},"references-count":32,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["9816"],"URL":"http:\/\/dx.doi.org\/10.1007\/s11047-020-09816-0","relation":{},"ISSN":["1567-7818","1572-9796"],"issn-type":[{"value":"1567-7818","type":"print"},{"value":"1572-9796","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,10,30]]},"assertion":[{"value":"16 October 2020","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 October 2020","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}