{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,29]],"date-time":"2023-03-29T14:26:44Z","timestamp":1680100004924},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"25-26","license":[{"start":{"date-parts":[[2020,3,11]],"date-time":"2020-03-11T00:00:00Z","timestamp":1583884800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,3,11]],"date-time":"2020-03-11T00:00:00Z","timestamp":1583884800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61671285"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61363066"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51705304"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007219","name":"Natural Science Foundation of Shanghai","doi-asserted-by":"publisher","award":["16ZR1413400"],"id":[{"id":"10.13039\/100007219","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimed Tools Appl"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1007\/s11042-020-08779-9","type":"journal-article","created":{"date-parts":[[2020,3,11]],"date-time":"2020-03-11T03:02:45Z","timestamp":1583895765000},"page":"18747-18766","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Detecting moving objects from dynamic background combining subspace learning with mixed norm approach"],"prefix":"10.1007","volume":"79","author":[{"given":"Yuqiu","family":"Lu","sequence":"first","affiliation":[]},{"given":"Jingjing","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Wang","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6039-5030","authenticated-orcid":false,"given":"Shiwei","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Xianchao","family":"Xiu","sequence":"additional","affiliation":[]},{"given":"Wanquan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,3,11]]},"reference":[{"key":"8779_CR1","unstructured":"Aybat NS, Iyengar G (2013) A fast first-order method for stable principal component pursuit[J]. arXiv:1309.6553"},{"key":"8779_CR2","unstructured":"Balzano L, Szlam A, He J (2012) Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video[C]. In: IEEE conference on computer vision and pattern recognition, vol 157. IEEE, Providence, pp 1568\u20131575"},{"issue":"33","key":"8779_CR3","first-page":"1401","volume":"33","author":"J Bao","year":"2013","unstructured":"Bao J, Wang H, Zhe C, et al. (2013) Moving object detection based on background image set and sparse analysis[J]. J Comput Appl 33(33):1401\u20131405","journal-title":"J Comput Appl"},{"issue":"6","key":"8779_CR4","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1109\/TIP.2010.2101613","volume":"20","author":"O Barnich","year":"2011","unstructured":"Barnich O, Droogenbroeck MV (2011) ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Trans Image Process 20(6):1709\u20131724","journal-title":"IEEE Trans Image Process"},{"issue":"11","key":"8779_CR5","doi-asserted-by":"crossref","first-page":"2419","DOI":"10.1109\/TIP.2009.2028250","volume":"18","author":"A Beck","year":"2009","unstructured":"Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Trans Image Process 18 (11):2419","journal-title":"IEEE Trans Image Process"},{"issue":"1","key":"8779_CR6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","volume":"3","author":"S Boyd","year":"2011","unstructured":"Boyd S, Parikh N, Chu E, et al. (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning 3(1):1\u2013122","journal-title":"Foundations and Trends in Machine Learning"},{"issue":"4","key":"8779_CR7","first-page":"1956","volume":"20","author":"JF Cai","year":"2008","unstructured":"Cai JF, Candes EJ, et al. (2008) A singular value thresholding algorithm for matrix completion[J]. Siam J Optim 20(4):1956\u20131982","journal-title":"Siam J Optim"},{"issue":"3","key":"8779_CR8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1970392.1970395","volume":"58","author":"EJ Candes","year":"2011","unstructured":"Candes EJ, Li X, Ma Y, et al. (2011) Robust principal component analysis?[J]. J ACM 58(3):1\u201337","journal-title":"J ACM"},{"issue":"4","key":"8779_CR9","doi-asserted-by":"crossref","first-page":"1014","DOI":"10.1109\/TCYB.2015.2419737","volume":"46","author":"X Cao","year":"2016","unstructured":"Cao X, Yang L, Guo X (2016) Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Trans Cybern 46(4):1014\u20131027","journal-title":"IEEE Trans Cybern"},{"key":"8779_CR10","doi-asserted-by":"crossref","unstructured":"Cheng J, Yang J, Zhou Y (2005) A novel adaptive gaussian mixture model for background subtraction[C]. In: Iberian conference on pattern recognition and image analysis, vol 3522. Springer, Berlin, pp 587\u2013593","DOI":"10.1007\/11492429_71"},{"issue":"12","key":"8779_CR11","doi-asserted-by":"crossref","first-page":"3419","DOI":"10.1109\/TIP.2011.2156801","volume":"20","author":"X Ding","year":"2011","unstructured":"Ding X, He L, Carin L (2011) Bayesian robust principal component analysis[J]. IEEE Trans Image Process 20(12):3419","journal-title":"IEEE Trans Image Process"},{"issue":"10","key":"8779_CR12","doi-asserted-by":"crossref","first-page":"1975","DOI":"10.1109\/TPAMI.2014.2314663","volume":"36","author":"Z Gao","year":"2014","unstructured":"Gao Z, Cheong LF, Wang YX (2014) Block-sparse RPCA for salient motion detection[J]. IEEE Trans Pattern Anal Mach Intell 36(10):1975\u201387","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"8779_CR13","doi-asserted-by":"crossref","unstructured":"Guyon C, Bouwmans T, Zahzah EH (2012) Foreground detection based on low-rank and block-sparse matrix decomposition[C]. In: IEEE international conference on image processing, vol 8556. IEEE, Orlando, pp 1225\u20131228","DOI":"10.1109\/ICIP.2012.6467087"},{"issue":"1","key":"8779_CR14","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1137\/140990309","volume":"26","author":"M Hong","year":"2016","unstructured":"Hong M, Luo Z, Razaviyayn M (2016) Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems[J]. SIAM J Optim 26(1):337\u2013364","journal-title":"SIAM J Optim"},{"issue":"2","key":"8779_CR15","doi-asserted-by":"crossref","first-page":"1007","DOI":"10.1109\/TIP.2018.2874289","volume":"28","author":"S Javed","year":"2018","unstructured":"Javed S, Mahmood A, Al-Maadeed S, et al. (2018) Moving object detection in complex scene using spatiotemporal structured-sparse RPCA[J]. IEEE Transactions on Image Processing 28(2):1007\u20131022","journal-title":"IEEE Transactions on Image Processing"},{"key":"8779_CR16","doi-asserted-by":"crossref","unstructured":"Kang Z, Peng C, Cheng Q (2015) Robust PCA via nonconvex rank approximation[C]. IEEE International Conference on Data Mining (ICDM), IEEE Computer Society","DOI":"10.1109\/ICDM.2015.15"},{"issue":"3","key":"8779_CR17","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.acha.2009.05.006","volume":"27","author":"M Kowalski","year":"2009","unstructured":"Kowalski M (2009) Sparse regression using mixed norms[J]. Appl Comput Harmon Anal 27(3):303\u2013324","journal-title":"Appl Comput Harmon Anal"},{"key":"8779_CR18","doi-asserted-by":"crossref","unstructured":"Kowalski M, Szafranski M, Ralaivola L (2009) Multiple indefinite kernel learning with mixed norm regularization[C]. In: International conference on machine learning. ACM, New York, pp 545\u2013552","DOI":"10.1145\/1553374.1553445"},{"issue":"11","key":"8779_CR19","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1109\/TIP.2004.836169","volume":"13","author":"L Li","year":"2004","unstructured":"Li L, Huang W, Gu YH, Tian Q (2004) Statistical modeling of complex backgrounds for foreground object detection[J]. IEEE Trans Image Process 13(11):1459","journal-title":"IEEE Trans Image Process"},{"key":"8779_CR20","volume-title":"Markov random field modeling in image analysis[M]. Markov Random Field Modeling in Image Analysis","author":"SZ Li","year":"2001","unstructured":"Li SZ (2001) Markov random field modeling in image analysis[M]. Markov Random Field Modeling in Image Analysis. Springer, London"},{"key":"8779_CR21","doi-asserted-by":"crossref","unstructured":"Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms[C]. In: Eleventh international conference of the center for nonlinear studies on experimental mathematics, vol 60. Elsevier North-Holland, Inc., New York, pp 259\u2013268","DOI":"10.1016\/0167-2789(92)90242-F"},{"key":"8779_CR22","doi-asserted-by":"crossref","unstructured":"Shu X, Porikli F, Ahuja N (2014) Robust orthonormal subspace learning: efficient recovery of corrupted low-rank matrices[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society","DOI":"10.1109\/CVPR.2014.495"},{"key":"8779_CR23","doi-asserted-by":"crossref","unstructured":"Sobral A, Javed S, Jung SK, et al. (2015) Online stochastic tensor decomposition for background subtraction in multispectral video sequences[C]. IEEE International Conference on Computer Vision (ICCV). IEEE","DOI":"10.1109\/ICCVW.2015.125"},{"issue":"12","key":"8779_CR24","doi-asserted-by":"crossref","first-page":"122101","DOI":"10.1007\/s11432-017-9367-6","volume":"61","author":"F Wang","year":"2018","unstructured":"Wang F, Cao W, Xu Z (2018) Convergence of multi-block Bregman ADMM for nonconvex composite problems[J]. Sci China Inform Sci 61(12):122101","journal-title":"Sci China Inform Sci"},{"issue":"1","key":"8779_CR25","first-page":"126","volume":"7578","author":"N Wang","year":"2012","unstructured":"Wang N, Yao T, Wang J, Yeung DY (2012) A probabilistic approach to robust matrix factorization[J]. Springer 7578(1):126\u2013139","journal-title":"Springer"},{"issue":"3","key":"8779_CR26","first-page":"289","volume":"58","author":"J Wright","year":"2009","unstructured":"Wright J, Ganesh A, Rao S, Ma Y (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[R]. Coordinated Science Laboratory 58(3):289\u2013298","journal-title":"Coordinated Science Laboratory"},{"key":"8779_CR27","doi-asserted-by":"crossref","unstructured":"Xu J, Ithapu V, Mukherjee L, et al. (2013) GOSUS: Grassmannian online subspace updates with structured-sparsity[C]. In: Proceedings of the IEEE international conference on computer vision, pp 3376\u20133383","DOI":"10.1109\/ICCV.2013.419"},{"issue":"1","key":"8779_CR28","first-page":"74","volume":"10","author":"L Yang","year":"2016","unstructured":"Yang L, Pong T, Chen X (2016) Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background\/foreground extraction[J]. Mathematics 10(1):74\u2013110","journal-title":"Mathematics"},{"issue":"11","key":"8779_CR29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TCSVT.2015.2493458","volume":"25","author":"X Ye","year":"2015","unstructured":"Ye X, Yang J, Sun X, et al. (2015) Foreground-background separation from video clips via motion-assisted matrix restoration[J]. IEEE Trans Circ Sys Video Technol 25(11):1\u20131","journal-title":"IEEE Trans Circ Sys Video Technol"},{"key":"8779_CR30","unstructured":"Yi X, Park D, Chen Y, et al. (2016) Fast algorithms for robust PCA via gradient descent[C]. Advances in Neural Information Processing Systems. arXiv:1605.07784[cs.IT]"},{"key":"8779_CR31","unstructured":"Zhao Q, Meng D, Xu Z, et al. (2014) Robust principal component analysis with complex noise[C]. Proceedings of the 31st International Conference on Machine Learning, Beijing, China"},{"key":"8779_CR32","unstructured":"Zhou T, Tao D (2011) GoDec: randomized lowrank & sparse matrix decomposition in Noisy Case[C]. Proceedings of the 28th International Conference on Machine Learning, Washington"},{"issue":"3","key":"8779_CR33","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1109\/TPAMI.2012.132","volume":"35","author":"X Zhou","year":"2013","unstructured":"Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation[J]. IEEE Trans Pattern Anal Mach Intell 35 (3):597\u2013610","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"11","key":"8779_CR34","first-page":"1482","volume":"20","author":"Z Zhou","year":"2015","unstructured":"Zhou Z, Jin Z (2015) Weighted nonconvex nuclear norm and its application in the moving target detection[J]. J Image Graphics 20(11):1482\u20131491","journal-title":"J Image Graphics"},{"key":"8779_CR35","doi-asserted-by":"crossref","unstructured":"Zhou Z, Li X, Wright J, et al. (2010) Stable principal component pursuit[C]. In: IEEE international symposium on information theory proceedings, vol 41. IEEE, Austin, pp 1518\u20131522","DOI":"10.1109\/ISIT.2010.5513535"},{"issue":"99","key":"8779_CR36","first-page":"1","volume":"PP","author":"L Zhu","year":"2017","unstructured":"Zhu L, Hao Y, Song Y (2017) L1\/2 norm and spatial continuity regularized low-rank approximation for moving object detection in dynamic background[J]. IEEE Signal Process Lett PP(99):1\u20131","journal-title":"IEEE Signal Process Lett"}],"container-title":["Multimedia Tools and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-020-08779-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s11042-020-08779-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s11042-020-08779-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,3,11]],"date-time":"2021-03-11T00:25:49Z","timestamp":1615422349000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s11042-020-08779-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3,11]]},"references-count":36,"journal-issue":{"issue":"25-26","published-print":{"date-parts":[[2020,7]]}},"alternative-id":["8779"],"URL":"http:\/\/dx.doi.org\/10.1007\/s11042-020-08779-9","relation":{},"ISSN":["1380-7501","1573-7721"],"issn-type":[{"value":"1380-7501","type":"print"},{"value":"1573-7721","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,3,11]]},"assertion":[{"value":"4 May 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 December 2019","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 February 2020","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 March 2020","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with Ethical Standards"}},{"value":"We declare that we have no conflicts of interest to this work and do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interests"}}]}}