{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,20]],"date-time":"2024-05-20T19:15:24Z","timestamp":1716232524314},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"1-2","license":[{"start":{"date-parts":[[2012,6,13]],"date-time":"2012-06-13T00:00:00Z","timestamp":1339545600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2012,10]]},"DOI":"10.1007\/s10994-012-5300-0","type":"journal-article","created":{"date-parts":[[2012,6,12]],"date-time":"2012-06-12T18:59:23Z","timestamp":1339527563000},"page":"67-86","source":"Crossref","is-referenced-by-count":11,"title":["Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis"],"prefix":"10.1007","volume":"89","author":[{"given":"Wendelin","family":"B\u00f6hmer","sequence":"first","affiliation":[]},{"given":"Steffen","family":"Gr\u00fcnew\u00e4lder","sequence":"additional","affiliation":[]},{"given":"Hannes","family":"Nickisch","sequence":"additional","affiliation":[]},{"given":"Klaus","family":"Obermayer","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,6,13]]},"reference":[{"issue":"3","key":"5300_CR1","first-page":"148","volume":"36","author":"P. F. Assmann","year":"2008","unstructured":"Assmann, P. F., Nearey, T. M., & Bharadwaj, S. (2008). Analysis and classification of a vowel database. Canadian Acoustics, 36(3), 148\u2013149.","journal-title":"Canadian Acoustics"},{"issue":"6356","key":"5300_CR2","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1038\/355161a0","volume":"355","author":"S. Becker","year":"1992","unstructured":"Becker, S., & Hinton, G. E. (1992). A self-organizing neural network that discovers surfaces in random dot stereograms. Nature, 355(6356), 161\u2013163.","journal-title":"Nature"},{"key":"5300_CR3","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1167\/5.6.9","volume":"5","author":"P. Berkes","year":"2005","unstructured":"Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5, 579\u2013602.","journal-title":"Journal of Vision"},{"key":"5300_CR4","unstructured":"Berkes, P. (2005). Pattern recognition with slow feature analysis. Cognitive Sciences EPrint Archive (CogPrint) (4104)."},{"key":"5300_CR5","isbn-type":"print","volume-title":"Pattern recognition and machine learning","author":"C. M. Bishop","year":"2006","unstructured":"Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer. ISBN 978-0-387-31073-2.","ISBN":"http:\/\/id.crossref.org\/isbn\/9780387310"},{"key":"5300_CR6","first-page":"235","volume-title":"ECML\/PKDD 2011","author":"W. B\u00f6hmer","year":"2011","unstructured":"B\u00f6hmer, W., Gr\u00fcnew\u00e4lder, S., Nickisch, H., & Obermayer, K. (2011). Regularized sparse kernel slow feature analysis. In ECML\/PKDD 2011 (vol.\u00a0I, pp. 235\u2013248)."},{"key":"5300_CR7","first-page":"253","volume":"15","author":"A. Bray","year":"2002","unstructured":"Bray, A., & Martinez, D. (2002). Kernel-based extraction of slow features: complex cells learn disparity and translation invariance from natural images. Neural Information Processing Systems, 15, 253\u2013260.","journal-title":"Neural Information Processing Systems"},{"issue":"3","key":"5300_CR8","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1162\/089976602317250933","volume":"14","author":"L. Csat\u00f3","year":"2002","unstructured":"Csat\u00f3, L., & Opper, M. (2002). Sparse on-line gaussian processes. Neural Computation, 14(3), 641\u2013668.","journal-title":"Neural Computation"},{"key":"5300_CR9","volume-title":"Pattern classification and scene analysis","author":"R. O. Duda","year":"1973","unstructured":"Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley."},{"issue":"1","key":"5300_CR10","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1007\/s00422-005-0585-8","volume":"93","author":"W. Einh\u00e4user","year":"2005","unstructured":"Einh\u00e4user, W., Hipp, J., Eggert, J., K\u00f6rner, E., & K\u00f6nig, P. (2005). Learning viewpoint invariant object representations using temporal coherence principle. Biological Cybernetics, 93(1), 79\u201390.","journal-title":"Biological Cybernetics"},{"key":"5300_CR11","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","volume":"7","author":"R. A. Fisher","year":"1936","unstructured":"Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179\u2013188.","journal-title":"Annals of Eugenics"},{"key":"5300_CR12","volume-title":"Practical methods of optimization","author":"R. Fletcher","year":"1987","unstructured":"Fletcher, R. (1987). Practical methods of optimization (2nd ed.). New York: Wiley.","edition":"2"},{"issue":"2","key":"5300_CR13","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1162\/neco.1991.3.2.194","volume":"3","author":"P. F\u00f6ldi\u00e1k","year":"1991","unstructured":"F\u00f6ldi\u00e1k, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194\u2013200.","journal-title":"Neural Computation"},{"issue":"8","key":"5300_CR14","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.0030166","volume":"3","author":"M. Franzius","year":"2007","unstructured":"Franzius, M., Sprekeler, H., & Wiskott, L. (2007). Slowness and sparseness leads to place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8), e166.","journal-title":"PLoS Computational Biology"},{"key":"5300_CR15","first-page":"361","volume":"8","author":"K. Fukumizu","year":"2007","unstructured":"Fukumizu, K., Bach, F. R., & Gretton, A. (2007). Statistical consistency of kernel canonical correlation analysis. Journal of Machine Learning Research, 8, 361\u2013383.","journal-title":"Journal of Machine Learning Research"},{"key":"5300_CR16","volume-title":"Neural networks: a comprehensive foundation","author":"S. Haykin","year":"1999","unstructured":"Haykin, S. (1999). Neural networks: a comprehensive foundation (2nd ed.). New York: Prentice Hall.","edition":"2"},{"key":"5300_CR17","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"G. E. Hinton","year":"2006","unstructured":"Hinton, G. E., & Osindero, S. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527\u20131554.","journal-title":"Neural Computation"},{"issue":"5786","key":"5300_CR18","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"G. E. Hinton","year":"2006","unstructured":"Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504\u2013507.","journal-title":"Science"},{"key":"5300_CR19","unstructured":"Huke, J. P. (2006). Embedding nonlinear dynamical systems: a guide to Takens\u2019 theorem. Technical report, University of Manchester."},{"key":"5300_CR20","first-page":"721","volume-title":"Advances in neural information processing systems","author":"Z. Hussain","year":"2008","unstructured":"Hussain, Z., & Shawe-Taylor, J. (2008). Theory of matching pursuit. In Advances in neural information processing systems (vol.\u00a021, pp.\u00a0721\u2013728)."},{"key":"5300_CR21","doi-asserted-by":"crossref","first-page":"3397","DOI":"10.1109\/78.258082","volume":"41","author":"S. Mallat","year":"1993","unstructured":"Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397\u20133415.","journal-title":"IEEE Transactions on Signal Processing"},{"key":"5300_CR22","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4471-3267-7","volume-title":"Markov chains and stochastic stability","author":"S. P. Meyn","year":"1993","unstructured":"Meyn, S. P., & Tweedie, R. L. (1993). Markov chains and stochastic stability. London: Springer."},{"key":"5300_CR23","volume-title":"Principles of neurodynamics: perceptrons and the theory of brain mechanisms","author":"F. Rosenblatt","year":"1962","unstructured":"Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan."},{"key":"5300_CR24","first-page":"272","volume":"4","author":"D. B. Rubin","year":"1983","unstructured":"Rubin, D. B. (1983). Iteratively reweighted least squares. Encyclopedia of Statistical Sciences, 4, 272\u2013275.","journal-title":"Encyclopedia of Statistical Sciences"},{"key":"5300_CR25","volume-title":"Artificial neural networks ICANN","author":"B. Sch\u00f6lkopf","year":"1997","unstructured":"Sch\u00f6lkopf, B., Smola, A., & M\u00fcller, K. R. (1997). Kernel principal component analysis. In Artificial neural networks ICANN."},{"issue":"5","key":"5300_CR26","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1162\/089976698300017467","volume":"10","author":"B. Sch\u00f6lkopf","year":"1998","unstructured":"Sch\u00f6lkopf, B., Smola, A., & M\u00fcller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299\u20131319.","journal-title":"Neural Computation"},{"key":"5300_CR27","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511809682","volume-title":"Kernel methods for pattern analysis","author":"J. Shawe-Taylor","year":"2004","unstructured":"Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press."},{"key":"5300_CR28","first-page":"911","volume-title":"Proceedings to the 17th international conference machine learning","author":"A. J. Smola","year":"2000","unstructured":"Smola, A. J., & Sch\u00f6lkopf, B. (2000). Sparse greedy matrix approximation for machine learning. In Proceedings to the 17th international conference machine learning (pp. 911\u2013918)."},{"issue":"7","key":"5300_CR29","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1162\/089976601750265009","volume":"13","author":"J. V. Stone","year":"2001","unstructured":"Stone, J. V. (2001). Blind source separation using temporal predictability. Neural Computation, 13(7), 1559\u20131574.","journal-title":"Neural Computation"},{"key":"5300_CR30","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1007\/BFb0091924","volume-title":"Dynamical systems and turbulence","author":"F. Takens","year":"1981","unstructured":"Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence (pp. 366\u2013381)."},{"key":"5300_CR31","doi-asserted-by":"crossref","DOI":"10.1137\/1.9781611970128","volume-title":"Spline models for observational data","author":"G. Wahba","year":"1990","unstructured":"Wahba, G. (1990). Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics."},{"issue":"9","key":"5300_CR32","doi-asserted-by":"crossref","first-page":"2147","DOI":"10.1162\/089976603322297331","volume":"15","author":"L. Wiskott","year":"2003","unstructured":"Wiskott, L. (2003). Slow feature analysis: a theoretical analysis of optimal free responses. Neural Computation, 15(9), 2147\u20132177.","journal-title":"Neural Computation"},{"issue":"4","key":"5300_CR33","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1162\/089976602317318938","volume":"14","author":"L. Wiskott","year":"2002","unstructured":"Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: unsupervised learning of invariances. Neural Computation, 14(4), 715\u2013770.","journal-title":"Neural Computation"},{"issue":"5","key":"5300_CR34","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pbio.0040120","volume":"4","author":"R. Wyss","year":"2006","unstructured":"Wyss, R., K\u00f6nig, P., & Verschure, P. F. M. J. (2006). A model of the ventral visual system based on temporal stability and local memory. PLoS Biology, 4(5), e120.","journal-title":"PLoS Biology"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-012-5300-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-012-5300-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-012-5300-0","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T01:40:33Z","timestamp":1559353233000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10994-012-5300-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,6,13]]},"references-count":34,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2012,10]]}},"alternative-id":["5300"],"URL":"https:\/\/doi.org\/10.1007\/s10994-012-5300-0","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,6,13]]}}}